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GENERAL INTRODUCTION

A recurring problem in many fields, especially diffraction optics,
is the reconstruction of a Fourier transform pair g,G from partial
data on either or both functions. Considerable effort has bgen expended
in the development of algorithms for its solution; although there have
been some successes, the problem has generally proved to be difficult.

Of particular importance to the RADC effort is the retrieval of wavefront
aberrations from the measured point spread function of an optical system.

Discussions with seyeral investigators who have employed their own
algorithms to these problems have indicated a sort of hit-or-miss attitude
with respect to their behavior in various situations. Sometimes the
particular algorithm works and sometimes it fails when- the data are
noisy. With the possible exception of Youla's recent study, there are
really no serious attempts to understand the stability, rate of convergence,
etc. with respect to noise in the measurements.

The present contract effort was devoted to the development and
mathematical understanding of new algorithms based upon numerical functional
analysis which are robust with respect to noisy data. The basic material
is contained in the two sections entitled:

1. Algonithms for neconstruetion of partially known, bandfimited

Fouwrien thansform pains grom noisy data: 1, the prototypical

Linean problem.
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11. Algonithms fon neconstruction of partially known, bandlimited
Fourlern thansform pains §rom noisy data: 11, the nonlinear

problem 0§ phase netrieval.

Both sections are very mathematical and employ mathematics not commonly
encountered by optical physicist and engineei‘s. For this reason a
summarizing section has been.included; it is the first section in the
report and is entitled

Algonithms §on neconstruction of partially known, band€imited

Fourien t/tanbﬂomh pains from nodisy data.

ii

AN

.. " .
e a®
L.

"v"c RN
. o .ot .
N N

|
!

'
A




ALGORITHMS FOR RECONSTRUCTION OF PARTIALLY KNOWN,
BANDLIMITED FOURIER TRANSFORM PAIRS FROM NOISY DATA
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ABSTRACT

\\This paper is a summary of more detailed mathematical work by the
author on recovery of partially known Fourier transforms. These problems of
inversion of the finite Fourier transform and of phase retrieval are known to
be ill-posed. We draw a distinction in the resultant ill-conditioning of the
problems between global ill-conditioning (due to the existence of multiple
exact solutions) and local ill-conditioning (due to the existence of large
neighborhoods of the true solution, all of whose members are indistinguishable
from the true solution if the data is noisy). We then develgp extensions of
known algorithms that attempt to reduce at least the effects of local ill-
conditioning on numerical solutions by using the idea of filtered singular
value decomposition, and present some numerical examples of the use of those

algorithms. ./
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1. INTRODUCT ION

— -

A recurring problem in many fields (especially diffraction optics,
electron microscopy, and X-ray diffraction) is the reconstruction of a Fourier
h transform pair g,G from partial data on either or both functions. Con-
siderable effort has been expended in the development of algorithms for its
solution; although there have been some successes, the problem has generally

3 proved to .= difficult.

AAA’JA‘__A_!_":._'_-"_;;‘.‘. A".;““L‘..J‘A- .. "‘_" o

< The canonical examples for such reconstructions are:

Example 1, Extrapolation of Band-Limited Signals. Given a noisy measure-

:1 ment § of g on an interval A= [al,a2] and the knowledge that G .i
vanishes outside the bounded interval B= [bl'bzl' reconstruct g and G on ‘
t the entire real line.

Example 1 is the archetypical linear problem in transform reconstruction. ) .<

A number of algorithms have been proposed for its solution, either by iterative

means: Gerschberg and Saxton [l1), Papoulis [2], Youla [3] or by direct means:

Cadzow [4), Sabri and Steenaart [5].

Example 2, The Phase Problem. Given a noisy measurement m of [g| on

an interval A and the knowledge that G vanishes outside the bounded inter-

val B, reconstruct g and G on the entire real line.

f Example 2 has been of theoretical interest for some time; see for example
Burge, Fiddy, Greenway, and Ross [6]; however in this most general form it has
& proved intractable. Numerical solutions obtained in particular cases have

done so by (sensibly) incorporating further knowledge of g and G. Two
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such examples are:

Example 2a, The Two Moduli Problem, Given noisy measurements m and n
of |g| on A and |G| on B, and the knowledge that G vanishes identic-
ally outside of B, reconstruct g,G over the entire real line.

Example 2b, The Phase Problem with Nonnegativity Constraints. Given a

noisy measurement m of |g| on A and the knowledge that G is nonnegative

over B and vanishes identically outside B reconstruct g,G over the real

line.

Gerschberg and Saxton [1] developed a widely used algorithm for Example
2a; almost all the iterative algorithms for the sélution of the general recon-
struction problem are suitably modified versions of this particular case. The
Gerschberg-Saxton algorithm (hereafter denoted as the GS algorithm) in its
general form is essentially the steepest descent algorithm with unit step
length and so is first order (7). 1In [8], the GS algorithm is successfully
applied to a problem of the type in Example 2b. An alternative second order
algorithm, based on Newton's method, has been proposed by Barakat and
Newsam [9].

The canonical examples presented are simple in form, nevertheless they
contain the salient features that make other, more complicated, problems in-
tractable. The font of all difficulties is that the reconstruction problem

is ill-posed, and badly ill-posed at that. The original definition of a well

posed problem is due to Hadamard [10].
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Deginition. A problem is well posed if the solution

1. exists

L.
2. is unique -
3. depends continuously on the data.
If a problem viclates any of these conditions, it is ill-posed. Each of the - ‘
model problems violates at least one of these criteria. The literature, e.q. if.f%ﬁ

[11-13] has focussed on violations of unigueness, however it is our contention

that violation of condition 3 is the cause of the most of the problems en- -

detailed analysis of transform reconstructions developed in [14-16). These

countered in numerical solutions; in particular it accounts for the extreme
sensitivity of such solutions to small perturbations in the data. i
The purpose of this paper is to summarize for the optical community the - »"
7Y

three references contain a detailed mathematical treatment of ill-conditioning

.
.
PR
A e a e

in transform recovery problems with emphasis on the-implications for numerical T
algorithms. The theory is dimensdion Aindependent, although the supporting
numerical calculations are restricted to one-dimensional problems. We hope to

present two-dimensional calculations in the near future.

In order to present the results the following notation will be used. If CL
Dcmbq then L2(D) denotes the space of sguare integrable, complex valued
functions over D with norm H+l and inner product (-,-). If T is any

set in LZ(BJS then the projection P_ onto T is defined by

T

y = Pox o= y€ET and ly-xll = inf lz - x| (1.1
Z€T

,
.
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In the special case when TELz(D); P, will be abbreviated to P_;
L (D)
has the form

. G (D) WED
(PDG) (w) .
0 otherwise

The Fourier transform & Lz(lRN) -’Lz(IRN) is defined to be

g(® = (FO (WD) = fez"i""*’ G &b .

-0

If D and E are bounded subsets of JRN then the operator PD,Q’PE will be
called a finite Fourier transform (fFT). Finally the interval [-c,c] shall .

be denoted by <¢I; the projection Pc shall be abbreviated to P e’ and the

—

I
£FT PC:FPC is represented by yc'

The next section of the paper presents a survey of known results on
example 1, which may be shown to be equivalent to inversion of the operator
3’c where ¢ = % f(al-az) (bl-bz)]l/z. Of particular importance is the rela-
tion between the ill-conditioning of problem 1 and the singular value decom-
position (SVD) of 3;; and how the two ideas are combined in inversion by
filtered SVD. 1In Section 3 local ill-conditioning of the nonlinear phase
retrieval problems is described in terms of that of the fFT; and it is con-
trasted with the global ill-conditioning due to the possibility of multiple
exact solutions. Section 4 presents a simple generalization of the GS algo-

rithm, tailored to overcome some of this ill-conditioning; together with a

review of its convergence properties. In Section 5 extensions of this
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algorithm are discussed, Section 6 contains a brief survey of numerical :
results (in the context of optical diffraction theory) on the.relative ——

behavior of these algorithms, followed by some concluding remarks.
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L 2. THE LINEAR PROBLEM

The extrapolation problem of example 1 requires for its solution inversion

of the linear integral equation
F PA.';'PBG =P9 . (2.1)

Since A and B are bounded sets PAsrPB is a compact linear integral
operator and Eq. (2.1) is a Fredholm integral equation of the first kind.
Inversion of such an equation is the prototypical linear ill-posed problem.
The ill-posed nature of the problem is exposed in the construction of
the solution using the singular value decomposition (SVD) of PA.Q' Py. As
. ]
outlined in Baker [17], a compact linear operator has an SVD {¢i'ci'wi}i=1
consisting of functions ¢i and wi and nonnegative real numbers o with
the properties that
i, {¢.) a {1, 1 £ orth 1 functi
i. ¢i i=1 an Vilial are complete sets of orthonorma unctions
Zor I..2 (A) and L2 (B), respectively.
ii., 0,20, and lim o, =0,
i i+l i i
_ 6. . 2.2
iii lﬁhypsw1 = ol¢1 (2.2)
Expansion of G and PAg as sums of singular functions
= . 2.
G ‘1‘: b,y P,g = ; a 6, (2.3)

gives a formal solution to Eq. (2.1) by equating coefficients, i.e.,

PA.?PBG = P,g o= oibi = a, . (2.4)
| e
B
7 S
.'.I
-
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This solution illustrates the ill-conditioning in the problem. For instance

if § is a perturbation of g such that

RERCAERERALPAE -~ i SB <o .'(i
13
.
. 4 ~..
.t

P, = ? 30, with ; |Si-ai|2<t-:2 (2.5)
then it is possible that the error occurs in a high frequency (large i) com- j!
ponent of PAg, so that a perturbation of size 50;1 is induced in G. For ﬁ' :
fixed € this perturbation grows arbitrarily large as i-+~. Thus Eg. (2.1) - ;
fails condition 3 of Hadamard's definition with respect to data perturbation ) —.i
in g. A similar argument, but one that is rarely made, shows that the
equation is also ill-posed with respect to changes in the model, i.e. perturba-
tions of the operator PASFPB. : _;ii
The above arguments show that the whole solution G cannot be recovered o 5
to within any specified accuracy given uncertainty in the data. Therefore )

the natural question to ask next is: "How large a part of the solution can be
recovered to within a desired accuracy in the presence of noise?" A partial
answer lies in the idea of the essential dimension N(8,e,,€,) of the problem;
loosely speaking this is the maximum number of parameters in a description of
the solution that can be determined to within an accuracy §, given errors

€, din PAg and ¢

1 2
and roundoff errors as well as those arising from an imperfect mathematical

in PAQFPB. (The latter error includes discretization

model of the real world.)

A more precise definition of the essential dimension as the maximum
dimension of any subspace U for which the associated projection PUG of

the solution can be accurately calculated [16,18] shows that it may be
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expressed in temms of the singular values. The optimun subspace is the span
of the first N(é,cl,ez) singular functions. This analysis suggests that
Eq. (2.1) be solved by filtered SVD. This algorithm was introduced by Hanson

[19]) in which G is expressed as the sum
G = ? p(ai,oi,Y)\bi (2.6)

where p 1is a filter function with the general form

-1
FPla,o0,v) o for large O© 2.7

~ 0 for small ©

and Yy is a parameter that incorporates knowledge of data errors and the
desired solution accuracy.

FilteYs come in many forms. For instance, if the errxor in g is such
that IIPAg-PAEH <£1, the model error €, is negligible and the projection
PUG is to be determined to within an accuracy 6 (i.e. IIPUG-PUEII €§); then
the filter associated with the essential dimension is

£ (a,0,y) = ao™l - if o2y

(2.8)
v 0 o<y

where Y= 516-1. This cutoff filter is a special case (q+=) of the class

of filters
L pla,o,y) .__°q_._ (2.9)
[ Al 4 . .
f. o<;+].‘.’Yq+1
:

7 The utility of the theory of the essential dimension lies in its ability _— .1
. 4
q

to predict the size and general form of components of the solution that may be
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accurately recovered in the presence of noise, before numerical calculations
are undertaken. Such predictions are therefore most useful in deciding on ;“j
the size and form of an appropriate discretization for use in numerical )
solutions. The theory is easily applied to transform recovery problems due to
the large body of knowledge about the SVD of the finite Fourier transform ] ) ‘.
(£FT) developed by Landau, Pollak, Slepian and Walom [20-26]. The next .
theorem gives a brief summary of those results that are most useful in the
present problem. s .

Theonem 1. i. 1f D and E are bounded subsets of IR with volumes A :
[p| and |E|, and surface areas |3p| and |3E[, then, for large c, the
number n(c,a) of singular values of pcD';PcE greater than a is given B “_#.3
“approximately by
n(c,a) ~ |D|+ ] - v| 30| |3E]¢®™ 2 log(a~t - 1) 10g ¢+ 0?3 (2.10)
..4‘
where cD is the set {cd: d€D} and Yy is a constant independent of ¢,D j
and E. ]
[

ii. In one dimension let on be the n-th singular value of 9:: . Then

if b is fixed, ¢ arbitrary and n is determined by

ns= [4c2 + -z-g- log(2c /2_11)] (2.11)
m

where [a) denotes the nearest integer to o, then o 1

| limo_ = (1+ 2 (2.12) T
o o 3
. o
T

1

:

o |
o

]

10 SO
- . --.J




iii. The singular functions of 32 are the eigenfunctions of the
Sturm-Liouville equation

2

((1-t2) 6 ' + (A -4arsc?td)¢ = 0 (2.13)

where scolutions are required to be uniformly bounded over the entire real line

The theorem indicates that the singular values on of .PDEVPE have a
steplike distribution; cnnvl for small n, on decays exponentially for large
n, and the change from on-1 to exponential decay occurs over an interval of
width proportional to c¢2' 2log ¢ centered on c2|D]-|E|. This in turn
implies that the essential dimension is approximately c2|D|°|E| and is
almost independent of noise: The exponential decay of on implies that the
essential dimension N==N(6,el,ez) is determined by an equation of the form
e ~¢ 6-1 so that the noise level el must be reduced by a multiplicative
factor to give an additive increase in N.

A second consequence is that the low order singular functions are solu-
tions to a Sturm-Liouville problem and therefore are analytic and slowly

varying. Thus they will be well approximated by a discretization based on

smooth functions. This was experimentally verified in [14], where a number

LD tn mat an o

of different discretizations of 52 were calculated for varying values of c.

The results indicated that discretizations based on Gaussian gquadrature or

Galerkin approximations using Legendre polynomials required only N+ O(log N)

i S

»

parameters to accurately approximate the first N singular functions of 52.

O v

In contrast Galerkin approximations based on piecewise constant or trigcno-

- metric functions appeared to require at least QN parameters to achieve the
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same accuracy, where a# 3. The difference may be explained by noting that
the expansion of an analytic function on [-¢,c] in terms of Legendre poly-
nomials will have rapidly decaying coefficients; whereas an expansion in terms
of piecewise continuous functions will converge only slowly. Moreover although
trigonometric functions are themselves smooth, they do not approximate the
original function but rather a periodic extension of it outside of [-c,c].
This extension is likely to have discontinuities at the endpoints ¢, so that
its Fourier series is slowly convergent. This was observed in approximations
of the singular functions of 5; where they had the worst performance of the
discretizations examined; therefore their use is not recommended in transform
recovery.

To conclude the section an example of solution of problem 1 by filtered

SVD is presented, see [14] for the details and other examples. The equation
.Q::G = (ch) (v) + eu(v) (2.14)

was solved numerically, where

. 2
sin Nv
g(v) = 2 (T) . (2.15)

This is the point spread function of an infocus, aberration free slit aperture.
The presence of noise was simulated by the term €u(v) with u(v) a random
variable uniformly distributed over ([-1,1] and ¢ a control of the magni-
tude of the noise. The parameter values c=1 and €= .03 were chosen, a
Galerkin approximation based on 80 piecewise constant functions was used to
discretize the problem, and the resulting finite system was solved by filtered

SVD using the filter of Eq. (2.9) with g=2 and y=_0l.

12
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Figure 1 shows two approximate solutions G calculated from noise data

along with the true solution for noiseless data
Glw = 2(1-|w]) . (2.16)

Figure 2 shows the extrapolation FG of one particular perturbation Pc§.
Because of the symmetry of the test functions each graph is for negative
values of the argument only.

The graphs show that G is a good approximation to the true solution G,

except at the origin where the smooth singular functions cannot reconstruct

the discontinuity in slope. Since this discontinuity dominates the far field

behavior of #G, the extrapolation is not as accurate as the reconstruction. v "“j#
.
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3. SOURCES OF ILL-CONDITIONING IN PHASE RETRIEVAL

: -

The previous discussion of ill-conditioning in the linear problem gives ' .

new insight into why the nonlinear problem of phase retrieval is ill-posed. :;1
Previous examinations of the problem have concentrated on showing that the ;"-':
.9

problem is ill-posed due to violations of conditions 1 and 2 of Hadamard's.
That it is also ill-posed due to violations of condition 3, and the implica- :'_ij

tions such viclations have for numerical solutions, has not been noted previcus

to [15). We therefore present a brief summary of all three possible sources of

Laln g am e st g

ill-conditioning and their effects on the behavior of algorithms for numerical

’. solution of such problems.

Violations of condition 1 are not in themselves important for the following

A Ak

reason. Phase retrieval is a model of a real world phenamenon known to exist.
Therefore failure of the model to have a solution does not imply that the real
physical quantity does not exist; so nonexistence must be due either to an

inaccurate model or to noisy data. Both of these possibilities are simply

extreme examples of discontinuous dependence of the solution on the data;

therefore violations of condition 1 are subsumed under violations of
condition 3.
Nonunigueness, however, is an important source of ill-conditioning. The

precise form of all possible solutions to the one-dimensional (1-D) phase

problem appears to have been first determined by Akutowicz [27,28] and has

. 4
P been independently rediscovered by a number of other authors, e.g. [29,30]. -]
' L |
. Their results imply that the phase problem in 1-D has uncountably many T
B R
. R
® x
%X
- 14
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solutions. 1In [31), see also [15], we show that these results may be extended
to two (and higher) dimensions to give necessary conditions on the form of
multiple solutions for higher dimensions; these conditions imply that multiple
solutions are significantly less likely than in 1-D.

The 1-D resylts depend on noting that any solution g(v) is an analytic
function of exponential growth: this follows from the fact that g is the
transform of a function G with bounded support and the Paley-Wiener theorer.

Therefore g{(v) has a Hadamard factorization [32] of the form

-
gv) = |g(o) et ®3V) p (1 - ;"-) (3.1)
k=1 k
where o and B are real constants and {vk}:_l are the countably many

zeroes of g. Then any other solution must be of the form

~ i (G+Bv)
e

giv) = B(v)g(v) &, BER (3.2)

where B(v) is a finite or infinite product of Blaschke factors, i.e.

« v-v;
B(v) = TN Bk (v) where Bk(v) = o . (3.3)
=1 % Yk

-~

Furthermore if B=0 then any g given by Eq. (3.2) is indeed a solution.
Thus alternative exact solutions are basically generated by "flipping" 2zeroes
of g(v) to their complex conjugates. Since there are an infinite number of
zeroes there are also an infinite number of exact solutions to a 1-D phase

retrieval problem.

15
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If the exact solutions were few and well separated, and the phase
retrieval problem well-posed in a neighborhood of each zero, then any
standard numerical algorithm would perform satisfactorily. However, as ncted
by Napier [33]), any N zeroes may be flipped or not flipped in ZN different
combinations, giving 2N different solutions. Therefore there is a very
large number of possible solutions, in fact an uncountable infinity of such
solutions. Furthermore, for reasonable functions G{w), any infinite product
B(z) of Blaschke factors will converge, i.e. B(z) = lim BN(z) where BN(Z)
is a product of N Blaschke factors. Since each fini::wproduct corresponds
to a possible solution, it follows that the set of solutions has limit points.
Any numerical algonithm will have great difficulty in the nedighborhced o4
duch points.

However the situation improves markedly in N22 dimensions. An exten-
sion of the arguments for N=1 shows that the zeroes of any alternative
solution g are the zeroes, or complex conjugates of the zeroes, of g. But,
as g is an entire function of N complex variables, its 2zeroes form an
analytic set X of dimension N-1 [34). This set X is essentially the
union of M connected, N-1 dimensional, analytic manifolds X;j. Therefore,
if part of a manifold X; 4is flipped to form the zeroes of g, all of X5
must be flipped to ensure that the zeroes of g also form an analytic set
X; so X will be of the form s x U MGP X* . But in two or more

k=1 Tk =1 %
dimensions the set X is likely to be irreducible, i.e. M=1, in the same

way that almost all polynomials of two or more variables are irreducible.

Therefore at most two possible solutions with zerces X and X* can be

.

.
FI]
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formed, and the solution is essentially unique.
Therefore, in the simplest model problem, ill-conditioning due to non-
uniqueness is likely to be a severe problem in one-dimensional problems, or

in problems that are essentially one-dimensional (e.g. those with radial

symmetry considered in [35])); but in higher dimensions it should have signi-
ficantly less effect. The situation is less well understood if side condi-
? tions are imposed. For instance if both g and G are analytic then the

solution of examgle 2a is essentially unique, but for arbitrary G, nonunigue

e

solutions have been constructed (see [11] for a review). Even less is known

about the effect of positivity.

—

However, it should be noted that for all three problems there can be
parasitic solutions due to symmetries, etc. For example, if G vanishes
outside of the interval dI where d<c then translations G of G will
still be within ¢l and will have transforms g which have the same moqulus

as g over «cl. , el

—— - -y
. ’ ‘("._i: ’ .
P .
. : '

Finally we show that example 2 is locally ill-conditioned in that it

O

E%f violates condition 3. The phase retrieval problem may be recast as reguiring ;

- - .

f, the solution of the nonlinear equation

&'A

s 2 2

[ LG =m &: L"(B) L7 (a) (3.4)

o

}f where &£ is the composite operator STloPASTPB and Tl
P-—‘ '»-' R
P',' ) 2 2 : ..'
( Z (9) = |g L : 1) +17 @) . (3.5) 1
. _. .
EF Since '93 is a bounded continuous operator and P,¥P, is compact, & is ‘:U?f
. ]
= .-
K T. -
3 -
r' - .k
: .
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compact. This implies that for any €>0 an infinite sequence of functions
{c,} can be found, such that : O
g, -6 1>1-8_; but 1 Z(G.) - LG)HIl<e . (3.6)
i J i 1 J
Nonuniqueness led to global ill-conditioning, in that there are regions |

in which many exact solutions exist. Compactness leads to local ill-
conditioning, in that in the neighborhood of an exact solution there are
directions H in which a change in the solution G induces a negligibly
small change in the observation m. Therefore although £ (G) and @ (G+H)
are distinct in theory in practice, with the presence of measurement noise,
they are indistinguishable.

This local ill-conditioning may be partially quantified by noting that

compactness is due to the operator PA37PB, and that inversion of & involves -

inversion of PAérP . Therefore the theory of the essential dimension and the

B
idea of filtered inversion outlined in the previous section suggest that the
essential dimension of the phase problem (the number of complex parameters
that may be accurately determined) is approximately bounded above by ‘ .J'
rl=(az-al)-(bl-b2), is relatively independent of the noise level in m, and
that the solution space should be restricted by filtering to the span of the
first N singular functions of PASVPB. Furthermore the discretization ~;!1
chosen for the problem should accurately approximate these singular values. ;_ ::
The local ill-conditioning of examples 2a and 2b is less well under- ;f _;

stood. However it is reasonable to suppose that the total amount of in- N

formation available in all the constraints is less than the maximum amount of

18
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information in each constraint considered separately. Therefore, if G is

represented by 2P real parameters, in example 2a P of these are deter-
mined by knowledge of |G|, and up to 2N by knowledge of [gl, giving an
upper bound on the essential dimension of P +2N. 1In example 2b the upper “";
bound is P +N; in this case the condition that G be real places symmetry
constraints on g, effectively halving the amount of information available ?»,jf~
in m. Again these results suggest that numerical solutions be constructed L

in a similar fashion as solutions to the linear problem.
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b, ITERATED PROJECTION ALGOR!THMS R

3
L\_.
G i

o —

The previous sections showed that transform recovery problems are locally

ill-conditioned, which confirms the practical experience of a number of

L

F authors [1,8,36] who noted very slow convergence rates of the Gerschberg- -
[':. Saxton (GS) algorithm. Therefore, in order to modify the algorithm to cope N
- with this ill-conditioning, we place GS in a more general setting by viewing - f.:
z it as a special case of finding a common intersection point of a collection i
1
of sets. In formal language, it is: ‘
b |
I \
{ Given the sets {'r.}’.“_ with associated projections P, =P )
i i"i=] M : i Ti :
" o find G such that GE€ N T, -
. i ™
t- i=1 - 1

Gubin, Polyak and Raik [37]) have proposed an iterative algorithm for the

solution of such problems in which at the n-th stage Gn+1 is generated by

= P.G where i=(n-1)mod M+1 (4.1)

and proved that under certain conditions, such as the convexity of the sets
Ti' the iterates converged to a common intersection point if one existed. A
survey of this and similar algorithms appearing in the Russian literature is

given by Censor and Herman in [38). If the set S is defined to be

s ={g€L®(®: g(v) = §(v) for vEal (4.2)

g for example 1, or e
)

s = {g€L2(IR): lgtv)| = m(v) for ve€a} (4.3)
for example 2, and the sets T, and T, defined as
¢ o
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T = {cetlm: = F g, ges) (4. 4)
Ty = {ceL’(®): G =0 for wgs) (4.5)
:l . then, as the Fourier transform preserves L2 norms
n -1 -1
L h=pPgeeH=F "h=P (F q) =PG (4.6)
5 [ 1 1
L.
3

and GS applied to examples 1 and 2 is recognizable as the iterated projection
algorithm of Eq. (4.1) with M=2,

The advantages of the iterated projection algorithm are: First that it
allows easy incorporation of extra constraints such as those in examples 2a

and 2b by setting M=3 and adding either the set

T {G€L2(1R): G(w) 20 for wEB} (4.7)

2

or ~

T

5 {ceL’(m : |Gw | = nlw) for wEB} . ' (4.8)

Second that in transform recovery problems the projections Pi may be very

easily computed. The disadvantage is that, as stated, the algorithm is
sensitive to local ill-conditioning. Figure 3 shows two instances of the
effects of ill-conditioning: in the first the sets dintersect

at a very acute angles so that the projections are very slowly convergent,

and in the second the presence of noise has perturbed the two sets so that
an intersection point dées not exist. These possibilities, and the jf'; AR
additional fact that Tl is not convex in phase retrieval problems, imply éﬁ‘l‘
T that the iterated projection algorithm will either be very slowly convergent

or fail to converge at all.

—~—— v vy Y T«

21 L__8

S L. SR L I A Ay . PR VO ST W WAL T AT S €.




Al e e oa” gt

In order to escape these difficulties we propose that the criginal

problem be replaced by

M
Find G to minimize F(G) = 3. lG-P.cl® .
21

Obviously F(G) 20 and F(G) =0 iff G is a common intersection point, but
even if such a point does not exist due to perturbations of the sets by noise
in the data, the G that minimizes F(G) is an acceptable pseudo~-solution to
the problem. We also propose the following extension of the iterative pro-

jection algorithm for minimization of F(G) in which at the n-th iteration

1 M-1

"l T D & P3G = %)

- (4.9)
Gn+1 = PM(Gn+Aan)

N
where

A€ (0,2) if T convex
M M ) (4.10)

€ (0,1) otherwise

This algorithm will be termed the restricted profection (RP) algoritim from
hereon.

RP has a number of useful features, in particular it produces constantly
decreasing residuals as does GS [l1], which are summarized in the following

Theorem, proved in [15].

Theonem 4.1. If the projections PiG are unique and continuous in G

then at the n-th iteration the iterates Gn of Eg. (4.9) satisfy

22
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F(Gn+1)<F(Gn) or Gn+k=Gn vkl . (4.11)

Furthermore if G is a limit point of the iterates then G is a fixed point
of the iteration.

RP can also be recast as one of the standard optimization algorithms as

the next theorem from [15] shows.

Theonem 4.2. The gradient VF(G) of F(G) is

.
P

..,,“. o, 4
L""L." L .

M
VF(G) = 2 1Z=:l (G-P,6) } (4.12)

Therefore if TM=L2(IR) then RP is the standard steepest descent

7
. : . 1 r
algorithm with variable steplength A€ (0, m) . - Y
We have presented the algorithm in a form in which iterates are
restricted to the particular set Ty- This includes the unrestricted case o
(TM=L2(IR)), but also allows from knowledge about the solution G to be —"

reimposed at each yiteration after less well-known requirements are satisfied
by moving in the search direction. However, the chief benefit of the . ]
: restriction in transform recovery problems with the set TM of Eq. '(4.5)-is : 7
that the resulting algorithms are efficient. That is at each iteration they S : 3
require function values of G and &G only across the intervals A and - ]
:t—‘. B. Efficiency has not always been achieved, for instance the version of GS - ?
L proposed by Papoulis [2] for inversion of the fFT requires knowledge of Gn N-
' across the entire line at each iteration. :
.y
_‘ To demonstrate that transform recovery problems are efficient we first _— .,_..f
E note that if 'I‘M is a linear subspace then the projection 1=’M is linear and . 1
s ]
¢ o
T
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L=
+ = G _— .-
P, (G, +H ) YT & PG (4.13)

i=)

so that the search direction is independent for X, and for any A the new

iterate is still in TM' Now for convenience let A=B=c¢l so that P_ =P

then

-1
pcplc = PCJ rs.’,’c .

Psg is easily shown to be

m(v)el arg g(v) v€cl
Psg =
g(v) ' otherwise
so that
- +
Py = 9-Pg+PR.P.g
and
= - * *
PcPlc G yc yCG+ ‘;CPS .;;c .
Moreover for example 2a
n(w)e1 arg G(w) ' w€cl
(PCP2G) (W) =
0 ' otherwise

and for example 2b

(Re G) (w), if (Re G)(w) >0 and
(Pchs) (w) =
0 othexrwise

It is obvious that calculation of PcPiG requires only values of

g=%$G on cl, so that RP is efficient.

24
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(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

we€el
(4.19)




We conclude this section by noting that the relationship between RP and
gradient method opens up new possibilities for improvement of RP. 1In
particular, as noted in Eg. (4.13}), if TM is linear then the search

direction is independent of A, therefore it is possible to do a line search

in the direction of Hn. By Eq. (4.12)
S F(G +AH) = VF(G_ +AH ,H )
ax n n n n'n
M-1
= 2 E (G +XH_ =P (G +XH ) ,H) . (4.20)

Since calculation of F(G) requires values of PiG' calculation of
F(Gn-+kﬂn) at any point in a line search gives sufficient information for
calculation of the gradient at that point. Therefore a line search algorithm
using™derivative information, such as Powell'sicubic line search algorithm
{39], may be used for the same cost as a standard quadratic line search that
uses values of rfc) only. Since in phase retrieval TM==L2(cI), cubic line

searches may be profitably employed.

25
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5.  ALGORITHMS BASED ON AFFINE APPROXIMATIONS o

The previous section showed that the GS algorithm could -t:;e extended to
an algorithm RP that mitigated some of the effects of ill-conditioning in T
transform recovery. However the extension does not remove all of these : :
effects as, in particular, it performs no filtering to restrict the solution 2
to a well-posed solution set. Moreover as RP is a variant of steepest }1

descent, it is only of first order and therefore will not perform well even ' e

B 00 ) e
. oo o B A
1
t
N JFUN

on some well-posed problems for the same reasons that gradient algorithms

perform poorly on some standard optimization problems. Therefore we seek a

- . ]
r., solution to both these problems by proposing a new class of iterative algo- - .1,
o o
g rithms based on more accurate affine approximations to the sets Ti or the o
E - functions F(G) and PiG. At each iteration these algorithms require the
A
solution of an ill-posed linear subproblem similar to that discussed in .‘,
Section 2; this may be done using filtered SVD thus further reducing ill-
conditioning in phase retrieval. :
We start with a simple example of how such algorithms may be constructed. ' .H
In RP the search direction Hn may be viewed as being obtained by replacing . j
the sets 'ri by point approximations piGn at the n-th iteration, and then ©
solving the subproblem 'l
-
3 2 L
Minimize F_(G) = ) HG-P.G I° . (5.1) R
n 4 in <o
i=]
o . . .
.. In particular the set S is approximated by the point Psgn. However the - .,

only restrictions on functions in S is that they have value g§ or modulus

!
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m over the interval A; outside of A <they may take on arbitrary values.

Therefore, if A=B=cI, the affine subspace

s, = {h: h = PP + (g-P_g) ,g€s} (5.2)

contains the point P and is contained in the set S. If it is used to

s%

te T by T = 9’-15 at the n-th

replace the point approximation PlGn 1 1n n

iteration, then the new subproblem to be solved is

M-1
minimize F (G) = lg-p_ Gh? + Z Ig-p.6 17 . (5.3)
n Tln = in

The minimum Ln satisfies the normal equations

M-1 RN

* + - = * + . RO
(FLF + M-2AL = F*P.g 122 PG (5.4)
giving a search direction Hn =Lr1 -Gn. If M>2 then this subproblém is -

well-posed as (.9'(': 9;-* (M-1)4) has a bounded inverse; but if M=2 then

the problem is inversion of the fFT .?c recast as a linear least squares

problem. This is an ill-posed problem best solved by filtered SVD as

described in Section 2; but as the same linear operator appears at each

iteration the SVD need be calculated only once. S ::'.;‘j
A more accurate approximation arises from replacing the projections “

PiG by the linear approximation
~ + - ] N

P,G~P.G + K (G)I(GG) (5.5) .

at the n-th iteration, where .%; is the Frechet derivative of the operator O

Pi. We assume that .1(1 exists and is a bounded linear operator; conditions



on the sets Ti that would guarantee these properties are quite complicated

’g"!
®L. ...~

(e.g. [40]) and are beyond the scope of this work. However if Jt; possesses
these properties then it is symmetric, J’-JE; is the Hessian (i.e. the

. . . - 2
second Frechet derivative) of the function Fi(G) :"G-—PiGH and for every

v L.
. PN

4 2. . .t v

) . I e :

ol it al wtoa

G ! i,

(F-2H,(6) (G-P.G) = 0 . (5.6)

If this approximation is used at the n-th iteration the corresponding

subproblem to be solved is
M-1

L 2
minimize F_(G) = 1;1 le-P.G -2#,(6)(G-6 )K" . (5.7

The function L that solves this problem is by definition the least sgquares

solution to the block system

J-Jf’l(cn) G, -plcn
: L= - : (5.8)
K 4 -.;?’M(Gn) Gn - PM_ lGn

Since the original transform recovery problem was ill-posed, this block
system is also usually ill-posed and should be inverted by filtered SVD.
However the cost of calculation of the SVD of the entire block matrix at
each iteration would very expensive. Therefore we propose that the SVD of
each block J’-Jf;(cn) be calculated and filtered separately to give an
approximate filtering of the whole matrix. As we shall see later in the

section such filtering can be done relatively cheaply.

28
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The third set of algorithms described here are based on the following

—
affine approximation of F(G) by . "."%
F(G) ~F(G ) +VF(G)(G-G) + > (G-G)VF(G)(G-G) . (5.9) -
n n n 2 n n n : ]
From Egs. (4.11) and (5.5)-
M
VF(G) = 2 2 (G=-P.G)
i=1
2 M
VPG = 2 ), (F-HH,(G) . (5.10)
i=1 :

At each iteration this approximation gives the subproblem
minimize F (G) = F(G ) +VF(G )(G-G)
n n n n

1 2
+ 2 (G-Gn)V F(Gn) (G-Gn) (5.11)

which, if VzF(Gn) is positive definite, has as its unique minimum the

solution Ln of Newton's eguation

V?F(G )L = -VF(G ) (5.12)
n n

giving the standard Newton search direction HngLn -Gn. However, for phase

,. retrieval problems, in order that the resulting algorithm be efficient in

.-':' the sense of the previous section we replace Eq. (5.12) by the restricted
E equation

'. P V’F(G_)P L = ~P _VF(G) (5.13)
k..; so that values of iterates are required only over the interval cl.

&

.
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Equations (5.12) and (5.13) are normally ill-posed and therefore best
solved by filtered SVD. As the fFT, with its exponentially decaying singular

. 2 .
values, underlies the Hessian V F(G) we propose a cutoff filter of the form

A-l

i >
£00) if ey

=0 otherwise (5.14)

where 63 is dependent on the noise levels and desired accuracy. This should
produce a search direction Hn in which F(G) should vary moderately ragidly
as directions corresponding to small eigenvalues, and thus slowly varying F,
have been filtered out. However the resulting direction is not necessarily a

descent direction, as for some G, VzF(G) will have negative eigenvalues;

but this may be corrected by use of the filter

£ = A if A>e3

=0 otherwise . (5.15)

Newton's algorithm in which Eq. (5.13) is inverted with the filter of Egq.
(5.14) shall be denoted by FN; if the filter of Eg. (5.15) is used it will
be denoted by FNP.

Since V2F(Gn) changes with each iteration FN and FNP incur con-
siderable costs in calculation of a new SVD at each iteration. Although some
savings are possible by using the old SVD as a first approximation to the
new SVD with optional iterative refinement, we instead sought to reduce
Eq. (5.13) to the block form of Eq. (5.8) so that block filtering could be

applied. This may be done by noting that if JV-JU; is a symmetric positive

30

WL RLATGN GRS IR U W NN S O P .

I.’l‘..l".l'n

. PR
. . S )
Bondud NN .

‘.Lt—l.' i .

. '
A!A_A.AL J'_,’q‘

PR A it A e Ak St an Bam ae Ad ol & T

b
""J.A.._" F

e
e

i



- )v.r' l' hid M . :

W YWY v v v w v Vv W

MO IR

——

W W T e el Call LA i afi " T~ —_—

definite square root Qﬂ--ﬁq)l/z which by Eg. (5.6) satisfies

G-P.G . (5.16)

(J-JIZ(G)) (G -PiG) = i
Therefore Eg. (5.13)
M-1 M-1
[iz=:1 P_(S- J,Y’i(Gn))PC]L = - 1;1 (G_=-P.P;G) (5.17)

may be rewritten as

M-1
12,
- 2 P I-2¢,(6)) 76 ~PG)

P ((F- X (G )) %)% ]L
i=1 ¢ 10 < i=1
(5.18)

which in turn is recognizable as the normal equations for the least squares

solution of the block system

1/2
(S J?’l(Gn)) Pc_ G, -PP.G
: L = - : . (5.19)
. 1/2 :
(I- av;d_l(cnn P_ G pcpM_lcn

7

Block filtering was chosen because of the simple form of the blocks in

Eq. (5.19) in phase retrieval problems. If the operators Pi are viewed as

Re H(w)

Im H(w)] instead of on the complex

acting on the pair of real functions |
valued function H(w) then simple calculations show that g- JU;(G) may
be represented as a block diagonal operator whose 2x2 diagonal blocks,

are indexed by the variable w. For example 2a
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[ sin 6 cos 6 7 PN
. " L_...@Q
cos £ sin 6 | o 1 :
(F- sz(c)) (W) = (5.20)
sin® -cos 8]
. * .
cos § sin 6 ] . o
where 6 = arg G(w) ’ ".
]
and for example 2b Sl
o o if (Re G)(w) >0 and e
o 1 w€ eI L)
(F-H,(G) (W) = (5.21) 3
1 ° otherwise
0 1
The spectrum of each operator J—-ﬂ’z is now recognizable as the union ) .‘T
over w of the spectrum of each block. For example 2b the block spectra
consists only of the set {0,1} so J-.}?’z is its own square root. For

examrle 2a the spectrum of S- ,;fz takes on a range of values, some of which )
. 172 . .
may be small or negative. Consequently (&- .7!’2) is either ill-

conditioned, or not well defined (i.e. has imaginary eigenvalues) or is both.

Therefore a filter with one of the following forms is used ,‘ )
£(A) = lel/z sign A, if A >e,
= 0 . otherwise (5.22)
g £ = A2 ., if A3e, )
- = 0 ., otherwise (5.23)
3 -
! to replace the entry 1 - T%-:%))T in Eq. (5.20) by f£(1 ~ Tg:—:;—-[-) . Finally T

for either problem the original block (#- J?’Z(G))Pc is reduced in size by

-t i——
- . .
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eliminating from the block those equations for (Re H) (w} or
sin 8(Re H) (w) -~ cos 8(Im H) (W) that correspond to eigenvalues that have been
filtered to zero.

From Eq. (4.15)
pc(y- .;f’l(c;))Pc = 9’;(.7-.7{5(9)) .;'c (5.24)

where g=#G and - .7/5(9) is the block diagonal operator

m(v)

sin¢ cos ¢ 1l - ) 0 sin¢ -cos ¢ _
F- H () = 9 4
-cos ¢ sin ¢ (o] 1 cos ¢ sin¢ j
(5.25)
.
where ¢ = arg g(v). e

PC(J- Jfl)Pc does not possess an obvious symmetric square root however Eqg. _’

(5.24) suggests the asymmetric square root (J- J("s(g))l/2 yc. This composite

. T .
X YOO

* s
oL Tt e
bk

operator may be aprroximately filtered by filtering each component;

(J- .jfs(g))]'/2 may be filtered as was (¥~ .7(’2)1/2

e
’

o

in example 2a and 9;

may be filtered after calculation of its SVD as described in Section 2.

Since the first filtering requires a trivial calculation at each iteration,

and 5; is independent of the iterates, this filtering may again be dcne
cheaply.
r! Therefore, after rows corresponding to filtered elements have been 5
eliminated, in phase retrieval problems we are left with a reduced block . '_':
.Ef system ]
¢ T ATILEIT AP PP FG -“.;aj;‘%
L = © (5.26) T
F" (.9-.3V(G)]'/2 P.G -G S
2 2 4 2 n ndf . :%
S .]
}‘ - :
[ _l:"_ﬁ
..
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[ to solve in a least squares sense. This can be done using a standard : 'l:~:§_-j
] ,'_ routine such as LLSQF in the IMSL library, or further advantage may be : .
L =T
;f. ’ taken of sparsity within the system. 1I1f Eq. (5.26) is solved at each )
F‘ : iteration with the filter of Eg. (5.22) resulting algorithm is termed SQFN; ::
k if the filter of Eq. (5.23) is used the algorithm is SQFNP. - ."
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6. SOME JLLUSTRATIVE NUMER!ICAL RESULTS

To conclude the paper we give a brief account of some r;\merical solutions ."‘

to examples 2, 2a and 2b using the algorithms proposed in the previous : j

ﬁ sections. Reference is made to our two previous papers for detailed numerical - #
g .'. computations of a wide selection of problems. The measure of performance of
; the algorithms was taken to be the number of iterations required to reduce the .
’ function F(Gﬁ) to below a prescribed value. The ill-posed nature of phase #
retrieval problems implies that this is not the best of measures in that a |
small value F(Gn) does not necessarily imply that Gn is close to the true

solution G. However without knowledge of the true solution we have none

Ly
Qi

better. Therefore, because of this ill-conditioning and the limited resources
for numerical computation at our disposal, the results presented here are
intended as a guide to the behavior of the algorithms on real problems rather . .1

trhan a firm prediction of their likely performance.

We begin with an account of the mechanics of the computation. First is

Coe
Y aale

the discretization: it was determined by the requirements that it gives an
accurate, efficient approximation to ‘¢c’ and that the discrete projections
.
be easily calculated. Therefore a discretization based on N point Gaussian ’:
quadrature was chosen; the numerical experiments mentioned in Section 2 - ‘
P showed its efficiency and its pointwise nature allows easy evaluation of i
-
o projections. The discrete problem thus involves determination of vectors
F . —— -
. A A N . . .
r‘ g, GEC whose elements Iy ! Gk are to be approximations to the function -
b
, values g(.ok) ’ G(Dk) at the abscissae Py of the N-point Gaussian quadrature :
} q
q
2 -
-
& q
b. 35 '.’—;.“
b - \'.""..
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rule on cl. To this end vectors m, BEIRN are formed with components

mk’m(pk)' "an(pl) where m(v) and n(w) are the known moduli. Then

~ ~ X ~
matrices W, P€CN N are constructed with W being a diagonal matrix whose

k-th ent;y is the weight Wi of the quadrature rule, and F having entries - d
sz -ezmckol. The discretized examgle problems are now. B
Find vectors a, G such that asfﬁa and
;
Examgle 2: ng‘ =m é
Example 2a: lgkl = mk, |G£| = n, ‘-
Example 2b: ngl =m, GE>O.
In order to test the algorithms, particular examples of each model - - ‘;'
problem were chosen. Of particular interest, in-as-far as this paper is b 1
concerned, is the test function
12w (%) - ) _J
Gl.) = e (6.1) ®
| e
W = ws &) s W s &) 7
: :’5\-:5
AR N P N MR N ks €.2)

G{w) is the pupil function of a slit aperture having unit amplitude over the

exit pupil and suffering from wavefront aberrations of optimum balanced coma

s3 and optimum balanced spherical aberration 54. where w3/>\ and w4/)\ . _.i;. :

are the dimensionless aberration strengths. 53 and 54 are the slit _:‘ ,

aperture versions [4l1) of the Zernike polynomials. This test function was .J

. used previously in [9]. In reference [9], the inversion assumed that the -fj B

B
:: amplitude distribution over the exit pupil was unity; in the present case 1
- B
i E
a. Q
9 R
- )
X -
» S
I 5 ..
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neither the amplitude distribution or wavefront are known a pAiOi{. The

3.W4= 3i/8.

We now outline the basic structure of all the numerical test runs before

numerical calculations summarized here were carried out for W

considering various points in detail. All tests consisted of the four

essential steps:

1. Choose an initial guess ao.

A~ A ~
2. Given iterates 9, and Gn compute a search direction Hn.

- T 4

3. Calculate a steplength )‘n and new iterates ' ‘ %
~ ~ ~ "~ AAA 1

Gpey = G+ AH Gpey ™ FWG . - ]

o,

4. 1Iterate steps 2 and 3 until the convergence critiria are satisfied. 1

The convergence criteria used in all calculations were

2
A -5 . -3
F(G ) <10 or 2 I A l<2x10 (6.3)

together with an upper limit Nmax on the number of iterations. The sum of : .
o7 - PR
the last three steplengths, rather than HAanH alone, was chosen as in ill- '

conditioned minimization problems "stop-start" behavior is often noticed.

-
o

That is a large step often followed by one or two small steps, after which

another large step is taken. This feature was often observed in the use of
affine approximation algorithms, differences in magnitude of successive ' %
{ steplengths by factors greater than 100 occurred fairly freguently. ”??
» LA
Three different forms of initial gucss were used: o 7}
A ' ®
s 1. Go 0' - :"
d ~ i g
| |
. ' '1

f
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RPN

~ -3
3. Gy =10 'r,.

Guess 2 is a damped perturbation of the true solution 8‘ with € repre-

1
senting the noise level. For convenience we shall express this level as a
percentage, e.g. €l= .2 will be described as 51=20\ noise. The variable
x, is a random complex variable with modulus uniformly distributed over {[0,1]
and phase uniformly distributed over {[0,2%). Guess 3 represents a small
totally random perturbation about the origin; again for convenience such
guesses shall be denoted by 51- 100s.

The first results reported are those on determination of an optimal

choice of )\n. Three possibilities were considered:

1. atan.
n

2. A§= T where r, is a random variable uniformly distributed over
[0,2].

3 A: is the approximate minimum of F(an+>‘nﬁn) as a function of A

determined by Powell's cubic line search algorithm [39] with the

following convergence criteria on the iterates )\3:

kn
3 3 A 34
(kkn-k-l)‘n) F (Gn+k)‘nﬂn ) <
3 - .02
k}‘n F (Gn)
k&5 . (6.4)

- 3A ~ 3~ )
i (Gn+k)‘nﬁn ) . P(Gz{*kknﬂn

~ = < .02
VF(Gn) F(Gn)

The performances of A; were compared by running each possibility on each

model problem with the appropriate test functions using RP. The parameters

38
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c=2, N=40 and Nmax' 50 were chosen and each problem was started with

three different initial guesses with €, =20s, 60% and 100%. .

1

The results were remarkably uniform over all test cases of model problem,
test function and initial guess. Choices Ai and Ai performed almost
identically with l: just under a factor of 2 better. Almost always only
one extra function evaluation was required for A:. This extra comrutation
almost exactly balances the savings in the reduced number of iterations so
that all three choices incurred the same computational cos t in reduction of
F(&n) to a specified value. However the greater flexibility of Ai led to
its adoption in all subsequent calculations.

We next attempted to estimate the local ill-conditioning in the problem '

by adding a small perturbation of size €., to the data and starting the

2
algorithm at the true solution ¢ of the unperturbed problem. The results
~

AL

were inconclusive; although the algorithms terminated at a vector &' such
that Iléi -Ein/uc‘.;i Il~e'2, this was due to the conditions F(éi) < 10.5 or
n> me being satisfied, and not due to convergence of the iterates which
appeared to cycle around some fixed point.

Further results showed that the problem was globally ill-conditioned in

that a number of differing functions &‘ were found starting from a random

guess (51-100\) such that r(éi)~1o'4 for example 2, or F(C1)~10-2

for examples 2a and 2b, but with I&* -&‘u/u? l~1. This suggests that the

surface {(F(G),G): GEc1} is very rugged, as expected from the results in

\ Section 3 on existence of multiple solution in one dimension. The results

' : !'A' . .
@

- also showed that the iterates determined as approximate solutions to example
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2a and 2b were definitely more acceptable as solutions than those for example

e PP TEIS
st WY

2, even though as measured by F(G) they were worse by a factor of 10 or -
more.

A good initial guess is of great help. If one is not available then it
is tempting to start with guess i, however some analysis [9] has shown that .
if the iterates have some symmetries, then such symmetries will be preserved

by the algorithm regardless of the form of the true solution. Thus the

An attempt to estimate the effects of ill-conditioning due to the
presence of SE was made by restricting iterates in RP to the span of the
first few singular functions of 52. When done for c¢=2 the reéulting ;

iterates reduced F(an) at a slower .rate, gave final iterates 61 for which

1&* - G*l was approximately the same as in the unfiltered algorithm, and still
~

failed to terminate due to the convergence of successive iterates but rather

ended due to the satisfaction of one of the other two conditions. For this

value of ¢ there are approximately nineteen significantly nonzero singular

is widely varying due to the nonlinearity and existence of multiple solutions.
It therefore seems likely that a severe restriction, e.g. to the span of the

L
first five singular functions, is necessary to provide an easily solved

problem.

The numerical results presented are some {ypical examples of the behavior
° of the algorithms on model problems 2 and 2a, with parameter pairs (¢,N) of

s
. (1.5,22), (2,32) and (2,40) and test function G, Eq. (6.1). For numerical

e
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:‘ highly symmetric choice of 6°=6 is to be avoided. -

values; the results indicate that even over this subspace the function F(G) R
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results concerning model problem 2b, see [15]. Tables 1 and 2 first give
the average number of iterations n and average final value - F(eﬁ) of RP
when iterated to convergence on several different initial guesses, each
perturbed by an amount el from the true solution. The remaining entries
are the ratio #h/n, where ¥ is the number of iterations required by the
remaining algorithms to reduce F(aﬁ) to below F(an). Cases where the
algorithm on trial failed to reduce F(Gﬁ) to within 100 F(Gﬁ) are denoted
by a *. Figures 4-7 show 4 typical final iterates reached by these algo-
rithm for varying problems and values €.

The filter parameter €., of Eq. (5.14), (5.15), (5.22) and (5.23) at

3

the n~th iteration was calculated fraom the quantity

€ = max{min{alir ;8 _,0-.025,.2),.002} . : (6.5)

For FN and FNP, €, was taken to be p; for SQFN and SQFNP, 83-=p/3.

This expression was calculated by trial and error and, although by no means
the last word, at least has the property of giving search direction Hn such
that the associated step length An almost always lay in the interval

[.1,1.5] and An-l when close to the true solution.

41
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7. CONCLUSION

The ill-posed nature of phase retrieval induced too muég variation in
numerical calculations to allow the drawing of quantitative judgements from
these results, but some qualitative remarks can be made. For these one-
dimensional problems RP was clearly the least expensive in terms of total comruta-
tional cost to reach a desired objective, and it is difficult to see how any

other algorithm can be imrroved through taking advantage of sparse Hessians,

etc. to seriously challenge RP for this position. However SQFNP was the
most robust in producing acceptable iterates from almost any starting point,
and although it did not display to the same degree the apparent quadratic

convergence of FN and FNP when close to the true solution, this could

possibly be remedied by a better choice of filter.
Efforts to estimate the role of local ill-conditioning and filtering in
phase retrieval problems were largely frustrated by the effects of glckal

ill-conditioning due to the existence of multiple solutions. This makes one

dimensional problems unsolvable for practical purposes, but it is expected
that in higher dimensional problems of real interest, with fewer possible
exact solutions, that local ill-conditioning will become dominant. Hopefully
this may be removed by filtering and quadratically convergent algorithms
will have a wider doma?n of convergence, thus becoming competitive with the

present first order iterative schemes.

.
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Relative performance of algorithms on example 2 with

G, Eq.

(6.1).

FNP

SOFN

T YT wTv v
PN AR

test function

SQFNP

60

100

22

32

40

22

32

40

1.9x107°

1.5x10"°
3x10"°

§x10°

ax1074

gx10-d

50

20

40

50

20

40

1.5

1.5

1.6

1.0

.825

.875

<35

.60

.425

.30 S

.30

.30

.30

SO

-, R,
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Table 2.

Relative performance of algorithms on example 2a with test function
G, Eq. (6.1).

SOFN

SQFNP

20

60

100

22

22

32

22

32

9x10
5x10

3x10°

2x10°

6x10

23

50

20

50

20

.30

.45

.80

1.0

.50

.35

.50

.60
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Solution & to example 2 reached from an initial guess G

€, = 20%: —— exact phase from Eq. (6.1); © reconstructed phase;

1

-=--~ exact modulus from Eq. (6.1); & reconstructed modulus.
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Fig. 6. Solution ¢ to example 2a reached from an initial guess 60 with

._ El = 60%: —— exact phase from Eq. (6.1); © reconstructed phase;
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’
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~ --=- exact modulus from Eq. (6.1); & reconstructed modulus.
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Fig. 7. Solution G to example 2a reached from an initial guess 60 with

€, = 100%: — exact phase from Eq. (6.1); © reconstructed phase;

1

-~=- exact modulus from Eg. (6.1); & reconstructed modulus.
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ALGORITHMS FOR RECONSTRUCTION OF PARTIALLY KNOWN,
BANDLIMITED FOURIER TRANSFORM PAIRS FROM NOISY DATA:

I THE PROTOTYPICAL LINEAR PROBLEM - d
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ABSTRACT

Problems involving reconstruction of partially known, bandlimited
Fourier transform pairs from noisy data are now regularly encountered in a
wide variety of scientific and technical areas. This paper is the first in
a series of studies of algorithms for their solution. These studies focus

on the algorithmic structure with respect to the dominant feature of such

problems, that they are ill-posed. The algorithms developed here are for
the linear prototype problem; namely extrapolation of a bandlimited function ]
known over a finite interval. The problem is cast as the inversion of a _ !é
1
linear operator, the finite Fourier transform. Criteria can be deduced from ]
a knowledge of the spectrum of this operator for the suitability of extrapola-
tion algorithms. These criteria are used to evaluate existing algorithms . o
(such as the Gerschberg-Saxton) as well as our new algorithm based upon in- ~‘13';

version of a Galerkin approximation to the operator using singular value de-

composition. Numerical results on the relative merits of different discretiza-
tions in our algorithm, and on its success in extrapolation in two examples

(with optical diffraction interpretations) with noisy data are presented.
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1. INTRODUCTION -

A recurring problem in many fields is the reconstruction of a
Fourier transform pair g , G from partial data on either or both func-
tions. Considerable effort has been expended in the development of algorithms
for its solution; although there have been some successes, the problem has :f

generally proved to be difficult. 1In a series of papers, of which this is

the first, we aim to detail the features that cause difficulty for numerical
calculations and to construct algorithms that take explicit account of such
features. It is not possible to remove such difficulties, but if they are

ignored in the construction of algorithms they invariably surface later in the ; )

solution in a more inconvenient form.

The canonical examples for such reconstructions are:

Example 1, Extrapolation o4 Band-Limited Signals. Given a noisy
measurement of g on an interval [al,azl and the knowledge that G
vanishes outside the bounded interval [bl,b2] , reconstruct g and G on

the entire real line.

Example 1 is the archetypical linear problem in transform recon-

struction. A number of algorithms have been proposed for its solution, either AR

by iterative means: Gerschberg and Saxton [l], Papoulis [2], Youla {3] ortnrdirecf-;'-

means: Cadzow [4), Sabri and Steenaart [5].

Example 2, The Phase ProbLem. Given a noisy measurement of |g]
on an interval [al,azl and the knowledge that G vanishes outside the bounded

interval [bl,bzl, reconstruct g and G on the entire real line.

60 ®
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Example 2 has been of theoretical interest for some time; see
for example Burge, Fiddy, Greenway, and Ross [6]; however in this most
general form it has proved intractable. Numerical solutions obtained in
particular cases have done so by (sensibly) incorporating further knowledge

of g and G . Two such examples are:

Example 2a, The Two Modull Probfem. Given noisy measurements of
lg| on [al,a2] ., |c| on [bl'b2] , and the knowledge that G vanishes
identically outside of [bl,bzl, reconstruct g , G over the entire real

line.

Example 2b, The Phase Probfem with Nonnegativity Constraints.
Given noisy measurements of |g| on [al,azl and the knowledge that G is
nonnegative over [bl’b2] and vanishes identically outside [bl,b2], re-

construct g , G over the real line.

Gerschberg and Saxton [l1] developed a widely used algorithm for
Example 2a; almost all the iterative algorithms for the solution of the gen-
eral reconstruction problem are suitably modified versions of this particular
case. The Gerschberg-Saxton algorithm (hereafter denoted as the GS algorithm)
in its general form is essentially the steepest descent algorithm with unit
step length and so is first order [7]. An alternative second order algorithm,
based on Newton's method, has been proposed by Barakat and Newsam [g8]. In [9],

the GS algorithm is successfully applied to a problem of the type in Example 2b.

The canonical examples presented are simple in form, nevertheless
they contain the salient features that make other, more complicated, problems
intractable. The font of all difficulties is that the reconstruction problem
is ill posed, and badly ill posed at that. The original definition of a

well posed problem is due to Hadamard [10]).
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- Deginition. A problem is well posed if the solution

A
R 3 .
1
S
Ay

1. exists
2. is unique

depends continuously on the data. S

If a problem violates any of these conditions, it is ill posed.

S

o gant

! Example 1 satisfies only condition 2; therefore it is ill posed. -

PR :
f
il L

To see that it fails condition 1, it suffices to note that g is the trans-
form of a function with bounded support so that it is analytic by the Paley-
V‘ Wiener theorem [11]. Any perturbation of the true g by noise that is not

analytic produces a perturbed problem with no solution. Analyticity does f}}

." ) . .
VRS - -
DT ) AR

imply condition 2, but also that condition 3 will fail very badly. This is

Py

due to the natural error metric for noise being the standard energy norm,
which is of no use as a measure of analyticity. Therefore noise that is

arbitrarily small in the error metric will produce arbitrarily large changes

in the solution, or even cause it not to exist. This aspect of the problem

is discussed in section 2.

Example 2 fails all three conditions; condition 1 for the same
reason as Example 2. Akutowicz [12,13) shows the existence of multiple

solutions for the phase problem both with and without nonnegativity con-

S straints. It is not known whether the two moduli problem has multiple solu-

tions, except for some trivial multiplicities due to symmetry and constant
phase factors. As for condition 3, Example 2 can be locally

linearized into Example 1, so it also fails this condition.
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Many researchers do not seem to be aware of the full implications
of these failures for numerical algorithms for approximate solutions.
Gerschberg and Saxton have been careful to show that their algorithm is
always error decreasing and to give examples of behavior using noisy data.
Chapman [14] modified their algorithm to make even greater use of known noise
levels. However the overall approach is still on an ad hcc basis, noise cannot
be explicitly handled in a satisfactory fashion in an iterative algorithm.
Papoulis [2] gives error bounds for his iterative method, but not a way of
incorporating them efficiently into calculations. It will be shown in this
paper that direct methods do allow development of robust algorithms. The
two direct methods proposed in Cadzow [3], Sabri and Steenaart [4] call
for inversion of ill conditioned matrices fofmed with no concern for optimiz-
ing the condition number. The optics literature contains many references
to "the number of degrees of freedom" [15,16].
However, the natural corollary has not been noted: numerical solutions to this
problem should contain discretizations of approximately this size and no signifi-
cant improvement in results can be obtained by using greater numbers of points,
approximating functions, etc. 1Ignorance of this point has lead to unnecessarily

long calculations in the belief that more points give greater accuracy.

This paper aims to provide a detailed study of Example 1 in the

language of numerical analysis, and to use this knowledge to construct numeri-

cal algorithms for its solution in a rational manner. Section 2 contains an
exposition of the structure of the finite Fourier transform and the linear
operator associated with Example 1. Using this structure in conjunction with

the theory of singular value decomposition, the solution is decomposed into

A SN Sl AU S aun o
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two parts; the first of which is finite dimensional and contains significant

information in the presence of noise,while the second contains no trustworthy _;_,.

'
j

information in the presence of noise. 1In section 3, numerical algorithms are
proposed that efficiently identify these two components, in addition a list g; :':
of desirable features of possible discretizations is given. Section 4 contains .. ...
an exposition of iterative methods, and a comparison of their merits with those ;{:‘;‘
of the direct methods of section 3. Finally section 5 contains a discussion

of some particular discretizations with numerical calculations showing their

robustness in the presence of noise.

L A clear exposition of the linear problem is important not only in o

its own right, because as mentioned above the local structure of nonlinear. ]
reconstructions can be approximated by ligearization in the neighborhood. 1}{t¥
The results of section 2 on this linearization show that the nonlinear re- ]
constructions are essentially problems over finite dimensional manifolds. ; ::11

If Newton's method is used to carry out these reconstructions, an accurate

efficient way of identifying the tangent plane to this manifold is needed. -

Reference [ 8] shows that singular value decomposition can accomplish this t“».;ﬁ

. L

task. We believe that the results of this paper show that Newton's method 1
coupled with careful discretizations for nonlinear reconstructions can be ';

MR

competitive with the widely used iterative methods. -
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2. THEORY OF THE MODEL LINEAR PROBLEM

This section contains an analysis of the theory of the linear
reconstruction problem discussed in the previous section. A formal

description is:

Given a function §(v) measured on v € A = [al,a2] that is

known to be in the Fourier transform of a function G(w) which has support

contained in B = [bl’bzl’ extend §(v) to a function g(v) defined on the

entire real axis.
For convenience we introduce the following notation.

Deginition 1. Let G(w) € L2 , the Pourier transform g(v) of

G(w) is defined as

m I3
g(v) f 2™V ) dw 2.1)

and denoted by

g = FG (2.2)

The inverse transform is denoted by

G =F1g (2.3)

Deginition 2. let S be a subset of the real line. The projec-

tion operator on L2 associated with S is denoted by Ps and defined by

(Psf)(v) = f(v) vVeS
(2.4

=0 vgs
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In this notation, the model problem is: Given a measurement g ,

find g and G such that

—

g=P, FPG , g=FPG (2.5) '
The problem can be symmetrized using simple translations and scaling *¢© read: e
Given a measurement g , find g , G such that - "ﬁ!

g=P FPG ., g =4 PCG (2.6)
where
.y =L b,y
C = [-c,c] , ¢ 5 I3, al) (b2 bl)] (2.7)
To solve Equation 2.6, we need to convert the linear operator -

Pc.ﬂ'Pc . As noted in the previous section this is an ill posed problem.
By the Paley-Wiener theorem [11]; §(v) , the Fourier transform of a function

with bounded support is analytic; consequently it has a unique extension g{(v).

Therefore the model problem is one of analytic continuation which is known to

be highly sensitive to measurement error in g(v), see [1,8]. In order to

S
make quantitative judgements on the effects of noise in Equation 2.6, we shall RN
use the concept of singular value decomposition. We assume the reader to be 53}::1
familiar with this technique applied to either infinite dimensional compact Qfgpﬁ

linear operators or to finite dimensional matrices; a discussion of the first

case can be found in Baker [17], of the second in Stewart (18].

In a series of papers, Slepian et 2l.[19-21}, the structure of s
SR
PC.J?'Pc was fully explored. The key results are repeated here: ____!ﬂ
1) Pc.ﬁ'Pc is a normal compact operator, and {
5 . o
||1=~c pcll , <1 (2.8) - @
Y
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2) The eigenfunctions of Pc JTPC can be taken as real. They
are then the prolate spheriodal wavefunctions here denoted by ¢n(v,c),

making explicit the dependence on c¢ .
3) The eigenvalues ln(c) satisfy

imn/2
A (e) = e |An<c)| (2.9)

AL > 1A

n n+1I

4) The singular values are denoted by On(c) with
o (o) = |An(c)| ' (2.10)
They behave as follows
a. For a fixed ¢ and increasing n
o () v (c2/m " (2.11)

b. For a fixed n , there exist constants an ‘ Bn

such that for increasing c¢
2

-Bnc
g (c) vi-a e ' (2.12)
n n

Since PcyPc is compact, it has a singular value decomposition

U,Z,V where U and V are complete sets of orthonormal functions, and

I 1is the decreasing sequence of nonnegative numbers defined in Equation 2.10.

Since ch’Pc is normal
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v o= {un¢n(w'c)}n=0
(2.13)
v = { (W, )}
= VP, (0re }n=0
where u, and v, ~are constants such that |un| = Ivnl = 1. With this

machinery, the solution to the problem can theoretically be determined by

expanding § and G as

g(v) = 32% anvn¢n(v,c) (2.14)
-
G = n§0 b u ¢ (wc) _ (2.15)

The coefficients a are determined directly from the known & and the bn

from the relation

g = Pcdf PcG (2.16)
the final result is
an
b = — (2.17)
n g
n

In this representation, the degree of il)l conditioning of Equation
2.6 (i.e. the measure of how ill posed Equation 2.6 is) as well as the
effect of noise can be determined from Equation 2.17 and the behavior of
on. Intuitively since on -+ 0 , by Equation 2.12 a small error in the
coefficients a_ of a high frequency (large n) component anvn¢n(v,c) of
g(v) will induce a large error in the coefficient bn » given by Equation

2.17, of the corresponding component of G(w). A more precise statement is

68
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Lemma 1 Suppose the relative error (in the L2 norm) on the
measured g is € , and the maximum absolute error that will be toler-
ated in G is 6. Then there is a decomposition of G into two components
Gl and G2 , in which Gl is always accurate within an error § and

. G2 cannot be guaranteed to be this accurate.

Proog: Let G Le decomposed as the sum in Equation 2.15. For a

is induced by assuming that ajseecray g are precisely known and that

1 N
Then
b1 = l/Ul . b2 = esee = bN-l =0 . bi = 0 for i>N
bN = e:/oN = bl(eol/oN) (2.18)

thus the absolute error induced is (EOI/ON). If N 1is chosen so that

(€0,/0) < 6 < (e0,/ ) (2.19)

On+l

then the first N componenets of G are always known to within an absolute

error § , but the remaining components are not that trustworthy.

fixed N , the worst possible absolute error in the first N components of G

= = ese — = i i = i > .
a 1, a2 aN_1 0, a is in error by € and ai 0 for i N

r-

f But as the decomposition allows a direct observation of the effects

1 of noise, so also does it allow direct action to reduce these effects. A
filter f£(0,e) dependent on the noise levels €, § is introduced so that G

. is estimated by G'

2

[- ©

. G'(w = 2, a_ £(0)¢ (wc) (2.20)

n n''n

] n=0

. where

.'

t.

g
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f(On) -> (On)-l as o 1

(2.21)

In order to construct a sensible filter for the general problem,

we first note the following conclusions from Equations 2.8 - 2,12.

a. Pc‘;-Pc is badly ill conditioned because Gn(c) exhibits

exponential decay in n

b. For a given c¢ , the singular values are approximately
distributed as a step function in that there exists an N (c)

such that

n < N(c) -on(c) Nl

(2.22)

n > N (c) -»on(c) N O

c. For a given ¢ and noise levels €, 6§ let N(e,8,c) be the
N of Equation 2.19. Then N(g,8,¢) is bounded by Equation 2.12.
Furthermore from conclusions a and b, N(g,8,c) is relatively
insensitive to € and 6 (i.e. for almost all € and § there

exists a p << 1 such that

N(e,$,c)-1 < N(g,pS,c) < N(g,8,¢)

<

(2.23)

N(pe,§,c) < N(e,8,¢c) + 1
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The general choice of filters is an art, however here we make

the particular choice

f(o,e) = 1/0 . o> e/d
(2.24)
= 0 , o< e/6
relying on conclusions b and c¢ above. This filter effectively truncates
the series in Equation 2.20 leaving only the trustworthy component G , of
Lemma 1. Since the filter is insensitive to € and & , the number of
elements in the truncated sum of Equation 2.20 is insensitive to noise levels
.It corresponds to the "essential number of degrees of freedom" of the model
problem mentioned in section 1. We stress that this number is relatively
noise independent (i.e. a function of ¢ with weak dependence on € and § )
and that it represents the number of components of the solution that are of

guaranteed accuracy.

Based on these results, the following algorithm is proposed. For
agiven ¢, € , and § calculate N(c,e,8). If it is sufficiently small,
accurate numerical approximations to on ’ ¢n(v,c) are calculated foi
n < N(c,e,8) and G is estimated using Equation 2.20. This procedure is
optimal in that it focuses on accurately calculating components of g that

are significant in estimating G while ignoring components that are useless

for estimation.
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3. DISCRETIZATION AND ASSOCIATED THEORY

In this section we consider a general class of finite dimensional
approximations to g , G and weigh the merits of different approximations.
The discretizations considered are derived using Galerkin's method, they are
based upon the natural error metric ”°||2 for the model problem. We choose

. . . 2
two sets of linearly independent functions on L' [-c,c]

}K

thhey o+ 83 5 Ml = llegll, =2 (3.1)

and introduce
Definition 3. Let Sy denote the subspace spanned by {wk}§=l '

SL the subspace spanned by {62}E=1 : let PK denote the projection operator

from L2 onto SK ’ QL the projection operator from L2 on SL .
We generate approximations
§,e€58,+§ ’ G €S *>G (3.2)

by requiring that §K r G minimize

. lg-~nll, , he s, (3.3)
- ”g-PKPC 5"PCHH , ¢ Hes, (3.4)
® Since SK ' sL are finite dimensional, such approximations

f'f always exist. By expanding §K ' GL in terms of the basis functions

- K i

° § = Y by ' G = a,f (3.5)
: K = Kk L & e
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and defining the quantities

o = W, 8 : By = (U ¥y (3.6)

then Equations 3.3 and 3.4 can be rewritten as discrete equations for the

~ + -~ +
vectors a = (a ...,aL) , b= (bl""’bK) .

1'
We note that

§K minimizes Equation 3.3 « Bb=¢ (3.7)

GL minimizes Equation 3.4 & 3 minimizes

~al
1872 -5l der’ (3.8)

where the matrices B , D are defined in Equations 3.6 and 3.7. For

typographic convenience, the subscript 2 will be omitted from “°l|.

In this construction, there is considerable freedom of choice for

the subspaces S, , S and their bases; it is therefore appropriate to

K L

adopt criteria by which a particular choice can be judged. We list six
criteria for evaluation of approximations and for each criterion list features
or bases that produce an approximation giving good results. We can then seek

a "best fit" approximation to these features.

1.  Uniqueness of approxmation: Because ||+|| is a strictly
convex norm §K is unique. If K < L then GL is not unique; if K > L

then GL is unique unless Pc QTPCSL contains components orthogonal to SK'
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Alignments of this form are pathological; the practical problem is the - -._f.f:
occurrence of nearly orthogonal components. These components will contri-
bute to ill conditioning in D , however both the pathology and the ill

conditioning can be avoided by choosing wk so that

P #FPS S (3.9)
(o4 [o] -

L K

Because the true solution is unique there appears to be no gain
in constructing nonunique approximations. Henceforth, we assume that K > L

and that GL is unique.

.

2. Accunwacy of approximations: BAn obvious requirement for any

sequence of approximations §K » G is that -
Lim ||§-§.|l =o (3.10)
K<

and if g 1is noiseless that

lin |- |l =0 (3.11)
K,L +o

Necessary conditions for Equations 3.10 and 3.11 to hold are that the sequences
o ) ., 2 s s

{wk}k=1 '{e£}=l be complete sets in L°[-c,c]. These conditions are also

sufficient for Equation 3.10, but not for Equation 3.1l because the inverse

of PC 9'PC is unbounded

The important issue for numerical calculations is the rate of con-
vergence of such approximations. Rather than attempt direct estimates of
IIG-GLH we consider a more easily computed quantity. The approximating

subspaces chosen implicitly define an associated finite dimensional operator
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- Rer = PrPe ¥ Py (3.12)

1 The quantity ”RKL'-Pc‘i-Pc” can then serve as a measure of the accuracy

of the approximation.

6 such that

We therefore seek functions wk r By ) 77;!
§ G >§.6 (3.13) .
and that minimize this error metric. The following proposition provides a Y i

partial answer

Proposition. 1: If K=L=N and ¥, » 6, are chosen so that
) wk(v) = ek(v) = ¢k(v) (the k~th eigenfunction of PCQQ'PC), then the
Galerkin approximation generated by Equations 3.3, 3.4 satisfy Equations
3.10, 3.11 as N + © ., Furthermore for any other subspces SK' P SL' , with ' J
e
K' , L' <N,

IRy =2, FE A < lIReupe = 2 FEl | (3.14) -

The proof of this and the succeeding two propositions can also be found in
[ 1. Thus the eigenfunctiéns are an "optimal" basis for construction of

approximations under this criterion

A
3. Conditioning of A, B, D: The previous criterion aids in L
distinguishing suitable approximating subspaces SK ,SL . One must now make
‘ a choice of bases within these subspaces. It is possible to choose wk ' 99v L_i ;i

so that 5 is well conditioned, but this is an illusory gain because the

matrices 5 and/or ; will then be ill conditioned. Therefore calculations

\ of §K(v) ' GL(w) made by using the representations in Equation 3.5 will be " ®
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error prone. Since the most informative measure of ill conditioning in a
metric, the condition number, is not easily calculated; we use a less informe-
tive, but more easily manipulated, measure for comparison of different

bases, the determinant.

Proposition 2: Let Sk ,SL be fixed subspaces with orthonormal

K L K L
bases {wk}k=l , {92}2=1 . If {wi}k=l , {ek}l=1 are any other bases

for S _,S. and the corresponding matrices A p i', B P 5', D ’ D' are defined

K L

by Equations 3.5, then

|det (B'D'A')| < |det(BDA)| = |det(D)| . (3.15)

Proposition 3: let K=L=N, wk = Bk = ¢k . Then for any other

subspaces Sge v SL' with K' , L' > N

det D'| < |det D (3.16)

These two propositions demonstrate that under this measure of ill conditioning,

orthonormal bases should b2 chosen and that the best choice of bases is the eigen-

functions.

4. Desinable special nesults:  Particular choices of bases
yield interesting additional results. If both bases are orthonormal, then
the spectral properties of D are identical with those of RKL ., which in

turn approximate those of Pc 3TPC. If K=1L and wk , 6. satisfy

k

Ibk = PC,?PC ek (3.17)

then the Galerkin approximation is also a least squares solution, i.e. GL

minimizes

E
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Both these results are obtained if K=L=N, ¥ = 6 = 9¢

5. Presence o4 noise: The above criterion are concerned only
with properties of the approximations. The important property of the data,
that it contains noise, must be considered. 1In section 2 we showed that it
forced a division of the solution into trustworthy and untrustworthy components.

The approximations therefore must echo this division as accurately as possible.

6. Etase of computation: In light of the above discussion
the obvious choice for a basis are the eigenfunctions, but we do not consider
their use as there is no -known simple numerical algorithm for their calcula-

tion. To keep computing costs down wk , 8 must have a simple closed form

2

representation. Furthermore the functions 37Pc6£ should also be available

in a closed form so that calculation of an approximate interpolation 9., to g

9, =FPG _ (3.19)

is cheap compared to numerical evaluation. If possible the inner products

(wk, Pc.?'Pcez) should also be found explicitly.

Taking all these issues into consideration we seek basis of

which are approximations to the

simply calculated functions {pk}:=l

eigenfunctions ¢k ; or at least possess, to some degree, the properties dis-
cussed in the criteria above. 1In particular the basis should be complete,
orthonormal, and have the property that each eigenfunction can be expressed

as a rapidly convergent series in pk .
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Given such a basis, we now describe an algorithm that for a given
observation § and noise levels € , & produces a Galerkin approximation - —""‘i
to a component of G that is accurate up to an error & , as in Lemma 1. 5 j
1. N, K(N) and the subspace SK(N) are defined by o :
-
a. N is the N(e,8,c) of Equation 2.19 . s

_ K(N) S

b.  Sg(y) = span {pk}k=l Sl

c. K(N) is the least integer such that the finite

dimensional operator Rew, associated with K=L=K(N),
Sx=5S,= SK(N) satisfies
. . e
- < - — .
IrRK(N)K(N) Pe gpc“ min(oy - § + €) (3.20)

2. The ¢ , D of Equation 3.5 are formed for this choice of basis

and the singular value decomposition [18]

4
+

{3.21)

o
™

5 =

calculated.

"" 3. The subspaces SK=SL=SN from which the Galerkin approximation
. GN will be formed by Equation 3.4 are the subspaces of SK(N) , being
v the span of the first N eigenfunct' i
X P genfunct ‘ons of RK(N)K(N)’ i.e.
e
. K(N)
" YW =8 ) = 2 Vi Py ) , k=1,...,N (3.22)
g i=]
o
@
= 78
PR EY T TR . -
R O ST - S~ .
AN AT A TP P LR AP RN ST A S ST




B AEUL A Tl A T Y et W i MM N SN ot ol ofVL A S S i i I A SIS hal™ Sl B S gl N

. 4. The approximant §N to g from s, can be formed from the

approxmation § to § in (i.e. the vector ¢ ).

K (N) Sk(w)

Moreover G  can be formed directly from ¢ as

K(N)
G = ¥ a p W (3.23)
k=1
with
a=vitote
where
+ _ -1 . €
Zkl = zkl , Aif Zkl > 5 (3.24)
=0 . Otherwise

S. The approximate extrapolation Iy to g is now defined as

Kg)
g (v) = FP  p (v)
N k=1 ak c k

The algorithm may also be used to solve the inversion of noiseless observations

g by choosing sequences € Gk such that ek/sk + 0 and calculating for

each € §, an approximation G by the above algorithm. Then in the

. . R
T
: L AR

x ' %k N (k)

limit GN(k) ‘converges to the true G . i;q

RS

The construction of an algorithm for the inversion of Equation 2.6 ;,;; i%

is now complete. The salient features are: use of the singular value iféz:gi

f~ decomposition of Pc F Pc , Prior estimation of the number of degrees of '—~~.<‘
; freedom N(e,6, c) present at given noise levels, and construction of a '¥:§
Galerkin approximation from a predetermined set of functions of a simple _f:%

] L

closed form that approximate the first N(eg,6, ¢) eigenfunctions.
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A final note: g can not be approximated directly from the sub-

K
space spanned by {# Pvpk}k:;) ., as is often done with

_ sin(v+kT/c)
JPcpk(v) = NIRRT (3.27)

Lt e o rT‘Y;w’ .1
- r

-

The untrustworthy components of the basis must first be filtered out by

KNSR S e

.

singular value decomposition before the extrapolation is done.
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4. ITERATIVE SOLUTIONS AND ASSOCIATED THEORY

In contrast to the direct algorithm of the previous section we
now consider iterative algorithms and integrate them into the body of theory
already bu‘lt up. We start with the original iterative algorithm, that of

Gerschberg and Saxton [ 1]; a two-step iteration that updates the approxima-

tion in both physical and frequency space.

The formal statement of the algorithm applied to the model problem

is:
a. Initial conditions
95 = Go =0 (4.1)
b. Update
= p_ + & .
I+l E Q’Pc Gn g (4.2)
6. =p F i (4.3)
n+l c n+l
where C is the set R-C. An alternative, but more conventional, form

is easily obtained. Concatenating the iterations above yields

(4.4)

= y—l -— pat = - -l -1 oS
Gn+1 pc (1>c ypccn + 3) (1 pc.?' pc .;'pc)cn + Pc.i pc g

upon noting that

Pg=

Sn n c g (4.5)

P +P; =1 (the identity operator) (4.6)

8l
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Equation 4.4 has a computational advantage over Equations 4.2, 4.3 because
it requires evaluation of functions in the bounded set C , instead of the

infinite domain C , during the iteration.

Equation 4.4 is recognizable as the simplest form of iterative

solution to the normal equations associated with Equation 2.6, that is

p F1p .FPG=1>J'1P§ (4.7)
(o] C C C (o]

The normal equations are not usually formed for ill conditioned systems since
they have even poorer conditioning; if Pc erc has singular values on ’
then PCJT-IPCJVPC has singular values oi . However since the singular
values display the step like behavior, quoted in Equation 2.23, for almost
all significantly non zero singular values on &’oi &~ 1 . Consequently

little is lost by consideration of Equation 4.7.

In the presence of noise, the iteration based on the update

Equation 4.4 is usually modified so that either it stops when

||c;n -G <38 (4.8)

n+l”

where ¢ depends on the noise level; or the damped update

-1 -1 .
G a1 = (1-12) G - PCST PFPG +P F PJ (4.9)

is used, where A > 0 depends on the noise level. The update, Equation 4.9,

if iterated to completion corresponds to a choice of filter

g(0) = ——— (4.10)
o+ A
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in Equation 2.20. However iteration to convergence is impossible in practice,

and as yet there is no good theory linking termination after N steps with

accuracy of approximation or noise levels. Therefore the clear insights singular r“:

. value decomposition gave in modifying direct algorithms to take account of noise J
have no analog for iterative algorithms‘. , -_i

| . " ‘.;
N There is a large literature on alternative algorithms for iterative ‘
solutions of Equations 2.6 and 4.7, eg. [22]. The most attractive of these is "

( the conjugate gradient method. This algorithm uses the residuals !—
r =P.¢'lp§-p.§¢"1p FP G (4.11) | .

n c c c c¥ "cn ]

. in the following iteration scheme _ 0- i

a. Initial conditions

- = . .
A. Py = Gy = O (4.12) .
r =P 9’-1? § (4.13) ’ - :
0 c c R
Zoroa
b. Update ’ q
“ I
Gn+1 = Gn + 0‘npn (4.14)

‘ - ﬁ

) = v
. Poa1 = Tnn * BoPy (4.15) RN,
where : .j:__j_-__.__:_:
2 2 ‘-.j
) e il i |l o
¢ a, = pe 2 ’ n - o .2 (4.16) . ol
e, Fepll [E] B :
Y
The conjugate gradient method stands midway between direct and - j
iterative methods since it can be shown that the iterates GN are also ) q*
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Galerkin approximations for Equation 4.7 formed by taking K= L =N, RN

k}llj—l . Although these approximations satisfy many of :_,,,q
.

» ot 4

e

L

Se = 5, = span {r

.,

the criteria of section 3 (the rk are orthogonal, GN -G if G exists),

B e aun aan gan o

an a prichi estimate of amount of computation to achieve a desired accuracy

puss..
cannot be made, nor can the iteration be modified in the presence of noise B

as is done for the direct methods.

to linear systems for all but the largest scale problems. This fact, combined

.

If the iterative algorithms are run on a digital computer, a ,' j

basis is implicitly used to represent the iterates. The only reason for §
not directly using this basis to form Galerkin approximations is cost. With :
present day computers, direct solutions are faster than iterative solutions L J

with the theoretical results on the effective finite dimension of the model
problem and a need for careful treatment of noise lead us to the conclusion

that iterative algorithms are nct the method of choice for this problem.
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5.  ILLUSTRATIVE NUMBERICAL CALCULATIONS e

_T

As an illustration of the results obtainable from the previous
analysis, we present numerical solutions to two particular problems. The
§48t is that of discriminating between possible bases for representation -
of g, G . The second is reconstruction of two particular G(w) of inter-
est in diffraction optics from noisy observations g(v) using the algorithm

of Section 3. -

-
P
e
)

PN P

Three commonly used bases for reconstruction are:

1w = - Ve
pk(v) = akPk(v/c) ’ k=0,1,...,N (5.1) T:F
pi(v) = Bk cos (kmv/2c) ’ k = even ‘ife
k=0,1,...,N (5.2) ' 9y

o ]

= Bk sin((k+l1)mv/2c) ’ k = odd e

]

- S8

3 _ 2ck - (N+1)c 2c(k+l) - (N+l)c )

pk (v) = Yk ’ v E[ (N+1) ’ (N+1) ] ’ ~ ?:'_4%4

k=0,1,...,N

1
| .
-

=0 ’ elsewhere (5.3)

0
B ]

,-
o
O )

P

Here Pk(x) is the kth Legendre polynomial, and « pk, Yk are constants -

k ’

chosen so that the various

-
‘. B @
u, Lo s

P are orthonormal. All three bases may be seen —_—

as the initial segment of a complete basis for LZ[-c,c]. Van Buren [23)

1 . .
used pk to give accurate representations of the prolate spherioidal wave

functions ¢k', the pi correspond to the sinc function basis of Equation 3.27

' 85 | S
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used widely in optics [24,25]), and the Di are the familiar piecewise constant
functions of numerical analysis (often used implicitly in algorithms based on

sampled point values of g(v)).

If a basis {Dk} is used to generate approximate reconstructions
via the algorithm of section 3, condition l.c provides a natural merit function

for the basis.

1. For fixed € and c¢ , the merit of the basis is the size of

the least integer K = K(g,c) such that

- < .
Rk Pca‘rpcll € (5.4)
However, as estimation of the norm in Equation 5.4 is too expensive for repeated
calculation, we choose a slightly different merit function. ' .
2. For fixed € , ¢ the merit of the basis is the size of the
least integer L = L(g,c) such that
fo -s | <¢ , for all n (5.5)
n "n
where sn are the singular values of RLL .

Since the are orthonormal, the sn are also the singular

Px

values of the matrix D . This, together with knowledge of o, allows cal-

culation of L(e,c) for varying pk + € and c .
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To rank the above bases, their L(€,c) were calculated for
c=.5, 1.0, 1.5, 2.0 and ¢ = .002, .02. The results appear in Tables 1
and 2. N(g,c) denotes thg number of on greater than € ; Li(e,c) , the
L(e,c) of basis {pi} . Because it is overly costly to consider every value
of N , the table entries give an interval containing N rather than the
exact result. The singular value decompositions of the matrices D were

evaluated using the subroutine LSDVF from the IMSL 1library.

The tables indicate that {pi} has by far the highest merit rating.
However, the complexity of programming and calculating the Legendre polynomials

and their finite Fourier transforms the spherical Bessel functions jn(y). [26]
+1 i k
P, (x) e ¥® ax = 2i° j_(y) (5.6)
L1 k k

affects this rating. We feel their use is worthwhile only for large ¢ or
high accuracy computations. The pi are, suprisingly, the worst of the basis
functions; it requires a very large number of such functions to approximate

closely the higher order eigenfunctions We believe this is due to

¢2k+1'

sin{(k+1)Tv/2c] vanishing at the endpoints v = + ¢ ; however, ¢ (+c) # ©

2k+1
consequently the ¢§k+l produce poor approximations in this region. The same
problem appears to a lesser degree in approximating even eigenfunctions ¢2k;
at the endpoints the derivatives of cos(kmv/c) vanish whereas d¢2k(tchv# 0.
The low rating of the pi marks them as a poor choice for reconstruction and

imply the sinc functions should not be used for extrapolation.

The basis of choice appears to be {pi} , combining adequate approxi-

mation power with ease of computation. The basis also has natural extensions

. el
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to other problems. For greater accuracy, higher order splines may be
preferable in use to {Oi}; for reconstruction problems in higher dimensions
over arbitrarily shaped support sets A ,B the basis extends to give the

usual finite element type approximations. |

These results on Galerkin approximations serve as a guide to construction

~ s 7’
1
‘

of good discretizations based on pointwise gquadrature rules. As an illustra-

-

i». tion we present some results on a discretization of Egquation (2.5) on Gaussian ) Q
{ guadrature. Let {pi}?=1 be the abscissae of the N point Gaussian 1'
; quadrature scheme on [-c,c] with associated weights {wi}!::l. Then }
t. Equation (2.5) may be approximated by .j
f T

g = FWG (5.7)

~

where F is an N XN matrix with entries . -:."u

- [
f o TR (5.8) |
kg = ¢ ' ) L
W a diagonal matrix with entries Wkk =0y and § and G are vectors whose ’::_-.'.-.:j:“
k-th entries are (hopefully) good approximations to g(pk) and G(pk) . .,
However in this particular discretization the Euclidean norms of the
vectors a and G bear little relation to the L2 norms of g(v) and _‘
4
G(w) and calculations show that the singular values of FW are not good ..4
approximations of those of Pc,ﬁpc. Therefore we replace Equation (5.7) by :!
.
.o TN
the system o
. .
. ~1/2A A AN al/2A _

y wt/ g) = (wl/zrwl/z)(wl’ G) (5.9)
- h
y Now the Euclidean norms of al Eﬁl/‘?& and 81 5&1/2& should coincide with . 1
. * 1
® ]
. @
T
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the L2 norms of g(v) and G(w) and the singular values of

El E(ﬁl/zﬁﬁl/z) be close to those of PCJIPC. :j,
We have calculated the L(€,c) of this approximation for the same V

values of € and c¢ wused above, the results appear in Table 3. It appears

that Gaussian quadrature is on a par with Galerkin approximations by Legendre

polynomials as an efficient discretization; this is only to be expected given

the role Legendre polynomia.s play in Gaussian quadrature. However in general h

Galerkin approximations seem preferable since they nast be used anyway to

choose among the many possible discretizations associated with a given

quadrature rule, and to perform interpolation within the interval or extra-

polation beyond it.

To test the actual inversion of noisy data, the algorithm of\Eection 3, L

with {pi} as basis functions, was used to invert the following data

corrupted with random noise: ' l;;f
RN
sin 2Tv o
gl(v) = T v P v| €1 (5.10) -
sin Tv 2 §
- = 8TV < .
g, (V) 2( p— ) , vl €1 (5.11)
b
p
. These functions can be interpreted as the point spread functions (= diffraction
o
? images) caused by an aberration-free slit aperture in coherent light and in- -
: coherent light respectively. The true solutions to the inversion problem are:
>.
P G fw) =1 , jw| €1 (5.12)
4 -
[ =0 , lw| >1 :
{jf;_
89 kﬁf
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Gyw =2-fuh , o<1 ol

=0 lw| >1 (5.13)

The G's are the corresponding optical transfer functions in the diffraction
imagery interpretation. In both cases c¢=1. The calculated inversions were . |
1

compared to the true Gi(w) on )u,f €1, and the approximate extrapolations

of Equation (3.26) were compared to the true 9; (v) on Ivl £4.

. . X . . -2
We first applied the algorithm to noiseless data, choosing &=1, € =10
- 5. - 5. i -p _Fp |
and K(N) =40 for g1 K(N) =80 for 9, (in both cases RK(N)K(N) PC 7Pc
< €). The resulting approximations to Gi (w) coincides with the true Gi (w)

to well within graphical accuracy. The approximate extrapolation to 9 (v)
also coincided to the true gl(v) to within graphical accuracy. The approxi-
mate extrapolation to gz(v) is plotted in Figure 1, tRe solid line is the

true 9, (v).

To simulate the presence of noise in the data, whenever a value of g(v)

was required in the numerical integrations used to calculate the components

“ - PN

ck = (g.oi) , a random perturbation was added. That is

g (V) = g(v) +€p max Ia(v)l (5.14)
vEe

was used in place of g(v). The constant € denotes the noise level, u is '

a random variable uniformly distributed over [-1,1)}. For this artificial N
noise, the error level € of the algorithm was taken to be the € in Equation ,'.'-"]
T3
, (2.8). Since we had no prior expectations on the accuracy of the inversions, ____Hg
| 1
: the error tolerance & of the algorithm was taken to be unity. ]
- 1

t " q
‘ J
.-
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To test the robustness of the algorithm, reconstruction of data with
different random perturbations of different noise levels were made. The same
K(N) as in the noiseless case were used. Table 4 lists four reconstructions
of Gl(w) from data with 1% (i.e., € =.01) noise level; there is approximately

a 5% maximum deviation from the true value. Figure 2 shows four reconstructions

of Gl(w) from data with a 3% noise level; there is now a 25% maximum deviation

from the true value. Reconstructions from data with 5% noise levels were still
recognizable; but at 10% noise levels the error (measured in the energy norm)
in the reconstruction exceeded 50%. Figures 3 and 4 show (see open circles)
the extrapolation of two sample reconstructions from Figure 1. For comparison
the true gl(v) is also shown as the solid line. Because Gi‘ and gi are
even functions of their arguments, the graphs have been plotted only for the
negative values of the respective arguments.

Figure 5 and 6 show four realizations of Gz(w) from data with 3% noise
level. Extrapolations of three of these reconstructions appear in Figures 7-9,
with the true gz(v) shown as the solid line. Although the reconstructions of
Gz(w) appear to be more accurate than those of Gl(w), the extrapolation to
gz(v) is less accurate than those to gl(v). This is due to the discontinuity
in slope of Gz(w) at the origin. Since the approximations to Gz(w) are
sums of small numbers of smooth eigenfunctions, they do not approximate GZ(O)
well as the graphs indicate. This low frequency error in the w domain is
then transformed into high frequency errors in the v domain, resulting in

errors in the extrapolation.
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The analysis used in defining the "trustworthy" component of G, and a

trustworthy Galerkin approximation, is wonsl case in nature. It is therefore
reasonable to supply the algorithm with smaller € or larger & than a :
PALOAL noise levels suggest (as was done here) or use a different filter in "f:i
Equation (3.25). However this cannot be made precise without some i

statistical statements on expected errors.
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desired accuracy when € = .002

Distribution of singular values, and required basis size for
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TABLE 4:

-1.0000

<9474

- .8947

.8421

)

. 7895

- .7368

.6842

.6316

{

.5789

. 5263

4737

.4211

.3684

.3158

.2632

.2105

.1579

.1053

- .0526
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Four sample Realizations of Reconstructions with 1s Noise.

G(w) ' Glw)
. 983 .973
1.009 1.010
1.013 1.021
1.004 1.017
.991 1.007
.980 .997
.974 .990
. 975 .989
.980 .993
.988 1.000
.999 1.008
1.007 1.015
1.013 1.019
1.014 1.019
1.011 1.015
1.005 1l.008
. 997 . 999
.988 -990
.982 .983
.978 +979
100

G (w)
1.099
1.043

. 995

.962

. 944

942

.952

.971

+995
1.017
1.035
1.046
1.048
1.042
1.028
1.008

. 987

.968

.953

- 945

G(w)

.907
1.005
1.046
1.050
1.035
1.013

. 993

. 980

.976

.979

.988

.998
1.007
1.012
1.014
1.012
1.007
1.001

. 996

.993
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Figure 1l: Extrapolation of gz(v) , see open circles, corresponding

to a noiseless situation.
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Figure 2: Four sample realizations of the reconstruction of Gl(w)

in the presence of 3% noise in §(v).
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Figure 3:

Sample realization extrapolation of gl(v)

to solid line in upper half of Figure 2.

103

o L e e e DIy WS WP

corresponding

PR




Te W, Wt W,y N Y e L e

A R 2 R A

0.5

. A d
DA
0 O
TN
Figure 4: Sample realization extrapolation of gl(v) corresponding

to dashed line in upper half of Figure 2.

104




N SR N TR TE TR R TETRTERTT TR R e e s e m e T

AT e Al et 2 A S iC g S et et e AT o ¢ SC s RN oM R e

Glw)

]
i

- 0.5 !
A0 05 0

T

2
.",. o o '
R e )
AN PRI P

r.‘ w ‘i

F. el
N -i:.' ::-{j_-:
= Figure 5: Two sample realizations (— *— and } of the reconstruction . s
¢

1 of G,(w) in the presence of 33 noise in g(v). RN
y T

T,

a
BT JONNEN

—_— Ty
1 ]

105 R




il

M e o Tv v
'
-8

,
.
.

v'. - o 4
RNV

8 ~ EEERLOLTA Do

LR S R R A DAL A N 2 D Nl B 47 B I AV S S el el A et D o aae aee im0

Figure 6:

CLe .
VRSP, SR

Two sample realizations (— e+ — and

of Gz(w)

) of the reconstruction
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ALGORITHMS FOR RECONSTRUCTION OF PARTIALLY KNOWN,

BANDLIMITED FOURIER TRANSFORM PAIRS FROM NOISY DATA:

I1 THE NONLINEAR PROBLEM OF PHASE RETRIEVAL
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Phase retrieval problems are ill-posed, however previous analysis has
focused upon global ill conditioning due to the existence of multiple exact
solutions. In this paper we consider the effects of local ill conditioning
due to the presence of large infinite dimensional neighborhoods of any exact
solution where members are all possible solutions provided there is any un-
certainty in the data. The form of such neighborhoods can be characterized by
viewing phase retrieval as a nonlinear extension of the linear problem of
inversion of the finite Fourier transform considered in the previous companion
to the present work. 1In particular, we are able to estimate the essential
dimension of phase retrievai‘préblems, i.e. the number of parameters in a
solution representation that can be determined accurately given specified
error levels in the data. Based on these results a modification of the widely
used Gerschberg-Saxton algorithm is proposed, analyzed, and then used as a
basis for development of more sophisticated algorithms. Numerical results
are presented on the performance of these algorithms on one-dimensional
problems. The results indicate that although the algorithms may be tuned to
overcome local ill conditioning, good solutions in one dimension are still
difficult to find numerically because of global ill conditioning. However,
the material in the Appendix indicates that in higher dimensions global ill
conditioning is considerably reduced so that the algorithms should be effective

in such problems.
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1. INTRODUCTION

In our companion paper [l], we introduced the problem of numerical recon-
struction of a partially known, bandlimited Fourier transform pair g, G and
considered in detail the model linear problem

Given values over a finite interval [al,a2] of a function g(v)

known to be the Fourier transform of a function G(w) with support

contained in the finite interval [bl,bzl, find G{(w).

The paper focused on the ill posed nature of this problem and its effects on
numerical solution, an algorithm (filtered singular-value decomposition) was
presented that could be specially tailored to cope with these effects. 1In
this paper we cog;idér the associated model nonfinear problem of phaAe
netrnieval.

The model problem in phase retrieval is

Given value m(v) over a finite interval [al,a2] of the modulus of a

function g(v) known to be the Fourier transform of a function G(w)

with support contained in the finite interval [bl,b2] and the

knowledge that G is a member of some set B, find g(v) and G(w).

The set B represents available prior knowledge on G. In this paper we

study three particular cases: no prior knowledge, G is nonnegative, and
)G(w), Zn(w) is known over [bl,bzl. Again our focus is on the ill posed
nature of phase retrieval and the resulting implications for numerical re-
constructions. In particular we generalize the iterated projection algorithm

of Gerschberg and Saxton [2] in such a fashion so that it may be identified
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as a first order, gradient type optimization algorithm. We then propose ;qj4ﬁ

second order, Newton type extensions of the algorithm and show that the linear S

problem arising at each step has behaviour dominated by the behaviour of the ER

linear problem [1]. )
The structure of the paper is as follows. Section 2 sets out the

notation employed in the paper and lists the particular model problems used

in illustrative numerical calculations. Section 3 contains a discussion of '

the ill conditioning of phase retrieval, focusing on the two causes: R

possible multiple solutions and ill conditioning of the underlying linear

operator (the finite Fourier transform). In the Appendix we show that ] ‘ia

although in one dimension multiplicity of solutions presents a serious

problem, in two or more dimensions its occurrence is pathologically rare.

Section 4 is devoted to a generalization of the Gerschberg-Saxton algorithm L
through restatement of the phase retrieval problem as one of finding the

closest point to several, possibly disjoint, sets. Two particular algorithms

are developed that use iterated projections; their convergence properties are !
investigated and their identification with the well known steepest descent

algorithm is established. 1In Section 5 a number of second order algorithms

are developed'from those of Section 4. Each algorithm requires the solution

of an ill posed linear problem at each iteration; we propose that this

solution be found by filtered singular value decomposition. In order to

save on the cost of an expensive decomposition calculation at each step, we '
indicate how a partial filtering can be obtained using a block decomposition

of the linear system and a precalculated singular value decomposition of the

; 113
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finite Fourier transform (fFT) that is constant across iterations. Finally,
Section 6 contains numerical results showing the application of these algo-
rithms to each of the model phase retrieval problem. Tables showing the
relative performance of the various algorithms and graphs of the approximate
solutions generated are presented and discussed.

The results indicate that in one dimension'the multiplicity of solutions
induces poor global conditioning so that the significant improvement of
second order methods over first order methods is restricted to small local
neighborhoods of the solution. Therefore the simplest algorithms appear to
be the most cost effective, however we feel that in higher dimensions, with
the increased likelihood of unique solutions, that higher order methods will

come into their own.
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2. SOME MODEL PROBLEMS IN PHASE RETRIEVAL

. . . . : 2 .
The analysis of this paper is set in the function space L (R) with the
standard inner product (-,+) and norm I-l. The Fourier transform

dr:LzaR)"Lz(R) is here defined to be

g(v) = (Fqg)(w) =] e Trlv“)G(ou) dw . (2.1)

2 .
Subsets of L (R) will be denoted by Ai or Bj' and the projection operator

2 .
P,: L (R) *A onto a paticular set A is defined by

PAf = g &= lf-gll = min l£-hll (2.2)
h€a

PAf is termed the projection of f on A, projections are assumed to exist
and be unique.

The interval [-1,1] will be denoted by 1 and [-c,c] by «cI; cI
will also be used to denote the subset of LzaR) of all functions whose
support is contained in [-c,c]. The associated projection operator is
therefore

f(v) , if v€ [-c,c]

(PcIf)(V)
(2.3)
=0 , if otherwise .

It will be abbreviated to Pc for typographic convenience.
Three model problems, variations of phase retrieval that occur in
physical problems, will be used as numerical illustrations in the remaining

sections. They are:

oot
L‘_A.J‘L’.')'. . e

.
i

— . : . . .
’ . . -
D .A.A_ " LJ_A' PRI AP

. .@

t

PRI W)




- = ¥ N . I A L AN SR AL A A St S S e o v ey

I. Given values m(v) over the interval [al,azl of the modulus of a _‘i

function g(v) known to be the Fourier transform of a function G(w)  :f{,

whose support is contained in the interval [bl'bzl' find g(v) and e

G(w). Some relevant references are (2,3]. _7.*ﬂ|

1I. Given values m(v) over the interval [al,azl of the modulus of a

function g(v) known to be the Fourier transform of a real, nonnegative

-

function G(w) whose support is contained in the interval [bl'bZ]'

find g(v) and G(w). Some relevant references are [4.,5].

° ITI. Given values m(v) over the interval [al,azl of the modulus of a y

|
- -

function g(v) known to be the Fourier transform of a function G(w)
b whose support is contained in the interval [bl,bZ] and whose modulus

1’ n{w) 1is given over [bl,bzl, find g(v) and G{w). Some relevant

- references are [6,7].

These two moduli m(v) and n(w) may only be known to within some accuracy

“J .
t,A €, that is measurements m and n are available such that
’r
m-ml, In-nll €€ . (2.4)
° In this setting all problems and errors are invariant under translation
and scaling; so, as in the previous paper [(l], the sets [al,azl, [bl,b2]
can be transformed into. c¢I where
2
° c=% [(az-al)(bz-bl)]l/ ) (2.5)
Upon defining the sets
®
) ®
116
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(i=1,

such that g= %G,

{g:] (P_9) (v) | = (P _m) (v)}

cl

= exn{c:620}

zcin{G:[(P G (w)| = (P n)(w}
C C

2,3) can be rewritten as:

gEA,GEBi .
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(2.6a)

(2.6L)

(2.6c)

(2.64)

(2.7)
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3. THE ILL-POSED NATURE OF PHASE RETRIEVAL

In the previous paper we indicated that the phase retrieval problem is,
in general, ill-posed in that it fails to satisfy Hadamard's definition of a

well-posed problem (the definition is repeated here for convenience).

Definition: A problem is well-posed if the solution
a) exists
b) is unique
c) depends continuously on the data.

If any of these conditions are violated it is ill-posed.

We now consider the ill-posed and ill conditioned nature of the phase

retrieval problem in more detail with particular regard as to the consequences

for numerical solutions. We wish to show that it is a failure of condition ¢

that is the main source of difficulty.

To illustrate the point we briefly review the prototypical linear
problem and its solution as described in the previous paper, the inversion of
a compact linear operator by use of its filtered singular value decomposition

(SVD). Let H be a separable Hilbert space and N:H+*H be a compact

T linear operator with an SVD{¢i,Oi,wi}. If g is an arbitrary member of H

with the expansion
. g = z alwl ’ 2 lal| <o (3'1)

i=0 i=0

then the equation HG=g has the formal solution

@
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i a, :
1
c = 2 ("‘o,)d’i . (3.2)
1=0 i

oo
The solution G is in H if and only if Ei-O laio 112'<w. Because

i’i
the singular values Oi tend to zero this is a stronger condition on the
coefficients a; than Eq. (3.1), so a solution does not exist for every right
hand side g. Thus the problem is ill-posed with respect to existence of
solutions. The solution is unique if and only if X has a non-trivial null
space, which is true if and only if 0i2>0 Vi. The solution does not depend
continuously on the data. If a small perturbation € is made in a high
frequency component ai of g then a perturbation (E/Oi) is induced in G;
this can be made as large as desired by increasing i. Thus for any given €,

d and solution pair g, G there exists an infinite dimensional set of

solutions g, G such that
XE =g, lg-gh<e, lc-GI>6§ . (3.3)

It is violation of condition ¢ that makes numerical inversion of
compact operators so difficult. In problems arising from physical systems
existence of a solution is a prerequisite for making the measurements;
failure of the subsequent mathematical model to have a solution is usually
due to measurement errors in g or K. Thus non-existence is really a
consequence of discontinﬁous dependence and unimportant in its own right.
Likewise the existence of multiple exact solutions is not in itself a problem.
In most cases the nullspace can be predetermined theoretically and the

operator restricted to the complement of this space. If the restricted
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operator had a bounded inverse, numerical inversion would present no further

difficulties.
- Solution by filtered SVD directly addresses the problem of discontinuous 5

dependence on the data by identifying the infinite dimensional subspace S - ';ai

[
.

over which J produces distinct (but very small) variations; then restricting

Ll pn kans 5

e &

. . 4 L. -
the approximate solutions to the complementary subspace S over wnich X 1 R

is uniformly continuous. This decomposition, effected by the filter,

.

corresponds to choosing the first N terms in a generalized Fourier expansion

of the solution G; as such it has a wide variety of uses and interpretations.

L‘ In the nonlinear problem of phase retrieval the traditional investiga- - ;
- - - |
E tions of ill conditioning and ill positioning have concentrated on the ;-t?it
S" questions of existence and uniqueness [3]. Necessary and sufficient %A

conditions that m and g must satisfy for existence of a solution G are e

given by the Paley-Wiener theorem. For one-dimensional retrieval problems the

form and existence of multiple solutions is a consequence of the Hadamard

factorization theorem (a result first derived by Akutowicz (8, 9]. An
extension of this theorem gives necessary conditions for existence of multiple
solutions in two-dimensional problems. A detailed exposition appears in

Appendix A.

Although questions of existence and unigueness have some influence on

the behavior of numerical algorithms, as with the linear problem discontinuous

e . . . . .
dependence on the data dominates. Existence or non-existence of solutions is

) again just a simple consequence of discontinuous dependence. If multiple

g

i solutions exist but are uniformly separated, their existence will influence

o
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the initial iterations of any algorithm but the final behavior will be deter-
mined by the question of whether the problem is well posed in a neighborhood

of each solution or not. As we shall show the phase problem is never well

. posed.

However existence of multiple solutions may be a stronger contributor
to ill conditioning than indicated abuve. As shown in the first section of
Appendix A, in the one~dimensional problem there may exist an infinite
sequence of exact solutions GN with a limit G_, corresponding to a

sequence of finite products of Blaschke factors and the limiting infinite

product. In this case the solutions are not uniformly separated and any

algorithm will have difficulties in the neighborhood of G_. Fortunately, e

for the reasons outlined in Appendix A, in two-dimensional problems multiple

solutions appear to be rare and the limiting behavior described above unlikely .
N in the extreme, unless symmetry considerations reduce the problem to an
. essentially one-dimensional form. ;
Proof of discontinuous dependence on the data is difficult for an ’ » .?
arbitrary nonlinear equation &(G) =g. The most widely used criterion © ]
is that the Frechet derivative D(G) of & at the point G be a compact

linear operator. The phase retrieval problem may be formally stated as that

of finding a solution pair to the equation

2@G) = Ipcypccl = (L oP FP)(G) = |ch| =m (3.4)

where the nonlinear operator 5%. is defined by

.Q’l(g) = |q| (3.5)
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so that % is the composition (o) of Ql and the compact linear
operator PCSTPC. The Fréchet derivative Dl(g) of Ea(g) is the bounded

linear operator defined by

D, (@h = Re(g*.h)/lg| . (3.6)

The Fréchet derivative D(G) of &(G) is the operator Dl(G) °PCJTPC; since
this is the composition of a bounded operator with a compact operator it
follows that D{(G) is compact and the phase retrieval ill-posed.

Since D(G) varies with G the decomposition by filtering of the
underlying space into a subspace S(G), over which D(G) i% slowly varying,
and its complement sl(G), is not a global decomposition. Instead S(G) and
Sl(G) vary with G and serve as tangent planes in the definition of mani-
folds # and .AVL over which @(G) is slowly varying or 271 s uni-
formly continuous. However as udfl is not linear, generation of an approxi-
mate solution EGUﬂH' does not convey the information that is contained in
generation of an approximate solution from a linear subspace Sl; and is also
a much harder problem.

The usual approach taken to overcome this problem, and to deal with
measurement noise, is to reduce the ill posed problem to a well posed problem
by regularization; that is a parameter A >0 and functional {(G) are

chosen and the regularized solution Gk found by minimization of
I Z(G) -yl +22(6) (3.7)

is taken as an approximation to G. As stated the parameter A and

functional §! do not appear to depend on measurement noise or the problem
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form in any obvious way, but the following theorem due to Tikhonov [10]

elucidates their relationship

Theonem 1: Under certain mild conditions on &, §I, G and g, then

G, minimizes £ (G) - gll + XQ(G)
if and only if

a) there exists 6>‘ >0 such that
G, minimizes NZ(G) -gll subject to §(G) <6>\
b) there exists EA >0 such that

G, minimizes 2(G) subject to I1£(G) -gll<e:A .

This approach is explicit or implicit in many of the algorithms presented in
the literature [11]. =~

Solution by regularization does not i@entify an approximating subspace,
or even a submanifold, such as that found by filtering; settling rather for
the (less informative) identification of sets A_Z {G: IL(G) -gll €€} and
Ag = {G: 2(G) €8} that contain the solution G. However the phase problem
does have a natural decomposition of the solution space into subspaces rather
than submanifolds, encouraging solution by filtered SVD rather than by

regularization. This follows from the form of D(G). Upon definition of the

subspace

T = {h: arg h=arg g} (3.8)

it is easily shown that

D.(g)h = e 1(379 9y hET
1 N (3.9)
= 0 h€E€T
123
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Consequently Dl(g) has a well defined null space 'I‘l and a bounded inverse S
on the complement T. Therefore the ill conditioning of D(G) is essentially
due - to the operator PC]PC studied in the previous paper. This suggests

that the global decomposition of H into linear subspaces S and SJ' used o e

there in inversion of PCJPCG=g by filtered SVD will also be appropriate

in the nonlinear problem. This idea is further developed in Section 6. ::,
.
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4. ITERATIVE METHODS

The formulation of phase retrieval as the search for a common inter-
section point, given in Equation (2.7), suggests use of successive projection
algorithms for its solution. The simple structure of the projection operators

PA and Py for the sets A and Bi appearing in Eq. (2.7) indicates that
i

this class of algorithms will be computationally efficient. Such algorithms
are presented for the general problem in [12] and were first applied to phase

retrieval by Gerschberg and Saxton { 7,13]. However these algorithms were

originally derived and analyzed under conditions such as existence of an inter-

section point, so they should not be applied directly to the phase problem due

—

to the presence of ill conditioning. We therefore propose and discuss modi-

fications more suited to the ill-posed nature of this problem.

4.1 The Generic Algonithm

Let Bi be a collection of M sets with associated projection operators
M
Pi' Since ill conditioning implies that n Bi can be empty, we attempt to
i=1
find an x that is closest to all sets Bi and which reduces to a common

intersection point {f one exists. Therefore we seek to minimize
z 2
F(x) 2 ) lIx-p_ xl (4.1)
. i=1 1

The simplest iterative algorithms for minimization of F(x) can be

considered as pointwise approximation. For an arbitrary point x the points

bi==Pix are point approximations to sets Bi and induce an approximation
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Gl(z,x) = Z Ilz-bill2 (4.2) _-_v_,‘_!

i=] -

to F(x). The algorithm then constructs a sequence X 1 where X 41 is

determined from X after minimization of G(z,xn) . ..
. L. -1 oM .
Lemma 1: G(z,x) has a unique minimum at y=M Zi=1 P,x and if y#z .
.~.*
- g
then G(z+A(y-2),x) <G(z,x) VA€ (0,2). %
Proo4:
M 2 M >
_ _ - 4
Glz,x) = 2, b 1°-2 3 (b ,2) +Mlzl .
i=1 i=l 3
- (4.3) ’ ;
- M 2 M bl 2 "'y
- > 3 ip 02w |3 2 -zt smia
n i=1 i=1 J
v 4
The quadratic in llzl is minimized at llzll =llyl, and the inequality is o .11
strict unless 2z=y. Moreover

4 2 4 2 2
G(z +A(y-2) ,x) 3 Ib, - zI° - 2) 3 (- 2z,b, -2) + A\ My - zl

i=]1 i=1
L M 2 2
, = X b, -zh®~ (2-A)Amly - 2l (4.4)
2 =10
L. *
z M o
- < Z b, -212 = G(z,x) 1
. =1 ! B
\ o since z#y and A€ (0,2) imply that A(2-}) IIy—zII2 >0. . ‘4
» Proposition 1: The sequence {xn} defined by the iteration ]
! 7 ]
.o
e
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1 = ’
oot w2 Ti% .
- (4.5) -]
a1 - X +A (y -x), )\nE(O,Z) )
satisfies
< = . .
y F(xn+l) F(xn) or xn+l X (4.6)
20
P If the projection operators are single valued then xn+1=xn implies that -
xn+k=xn Vk. If the sequence xn has a limit point x at which the pro- p
; jections are continuous and '
p-- v .
€ 0<1lim inf A_ € lim sup A <2 . i
;- then x is a fixed point of the iteration.
S o
X ~ RN
! Proo4: : =
: °
b , ‘ M 2 M 2 T
b = - < -
Flx_,)) 2 Mx o -Px 1T < Y Mx o -Px |
. i=1 i=1
" .
4 = +A (y - 4.7
P Glx +A (y -z ).,x ) (4.7) o
< L
;- . < G(xn,xn) = F(xn) . :
¢ From Lemma 1 the last inequality is strict if x #y . Therefore )
< 4
e = s Y = s Y = Y . " -
rx F(xn+1) F(xn) if and only if Y, =%, if and only if X 1= % implies %
E Yol = Yo' consequently X ek = *n for all k. Let x be a limit point of 'ff'c- : K
* x . if X is not a fixed point then Iy - #2=€>o0. By continuity of [l RN
¢ . . e
o and Pi at x, then 1lim x  =x implies e
b -
' a) lim F(xnk) = F(lim xnk) = F(X)
b) limy, =7 .
127
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Now choose x sufficiently close to X such that

N 1 2
- < =
P (x) F(x)| < 7 aMe (4.8)
and

2., ¢ ‘ N

- Z = .
llyN xNN Z 3 (4.9) - _J

- where '
: ¢ = min[lim inf A, 2-lim sup A ] . (4.10) Lo

These inequalities imply

Dk}

2

( < = - -\ - | .
[ Fxyg, ) S Glxg, .xy) G (x %) A2 XN)M"yN le o
. -
- )
t <F(xy) - = o’Me (4.11) -
L N 2 .,%
I S KPR g
! ’ But as F(xn) is always decreasing, this implies the contradiction .

3

[ lim F(x, ) <F(X).

- k

P

. Existence of limit points and convergence of the algorithm from an

C

r? arbitrary X, cannot be guaranteed without further rather restrictive global .
{_ conditions such as compactness of the sets Bi and continuity of the pro-
S
>
R jections Pi. However examples showing failure of convergence after violation
-

L]
- of these conditions are somewhat pathological; in practice, although the J
L 1
- conditions may not be met, the algorithm almost always converges. Apparent '
Y

' failures are usually traced to ill conditioning not to violation or near -
e

- violations of these conditions, therefore we assume henceforth the existence .

of limit points, leaving determination of sufficient conditions for this

e
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existence to the analyst, and turn instead to an alternative characterization

of these limit points and the algorithm itself.

4.2 Successive Projections as Steepest Descent Algornithms

To demonstrate that the generic algorithm of Proposition 1 is the
standard steepest descent algorithm applied toc F(x) we need the following
definition: Let f:H*R be a real valued function on a Hilbert space H.
Then the gradient Vf(x)€H of f at x is y if and only if y is the

uniqgue vector satisfying

f(x+z) - f(x) - (2,y)
izl

lim o . (4.12)

Tzli+0
. . . 2
The gradient VF(x) is the sum of the gradients of ﬂx-—Pix" . We next
require

Proposition 2. 1If there exists a A>1 such that

PA(PAx-FA(x-PAx)) = PAx (4.13)

and PAx is single valued, then

2
V(llx-PAxll) = 2(x-PAx) . (4.14)

Proo§: 1t suffices to show that for some constant ¢ the following
inequality holds

|||y—PAy||2-||x-PAx|l2—2(x—PAx,y -x] € clx-ylI% . (4.15)

We first note the pair of inequalities.
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2 2 2
- < - i - - - -
Iy PAyll Slly -p_xl Ily PAy||+2(y Py,Py-P x)+llp x-P_ vyl

2 2 2 2
- e > - | - - - - .
lly PAxI Ly PAy | Iy PAxll +2(y PAx,PAx PAY) + IIPAx PAy I (4.16)

and the resultant inequalities

- 2 =
- - - >_ - . .
2(y PAy,PAy PAx) 2 ||PAy PAxll (4.17) :

._; 2 ~
- - <- - | . Ce
E_ 2(y PpX/P,x PAy) < llpAy PAxl (4.18) L _}
3 We also require the equality %
..‘ ’ 4

ly -2yl - Ix - p_xl% = 2(y - x,x - P_x) .

{ A A ' a I

- 2 2 -
P = Ix-yl +||PAx-PAy|l +2(y~-x,P x—PAy) +2(x-PAx,P x-PAy) (4.19) .

A A

,
@i,

—-

We next bound lIPAx—PAyII in terms of lx-yll. By the hypothesis of the

proposition

., e
b, et
. ot e ‘.
. R .
PR 4 2 e e

2 2
- - > - -
||PAx+>\(x PAx) PAyII 2P x+A(x PAx) p_xll

=A‘°‘|lx-prll2 (4.20)

which in turn implies

e
RRRRA SRR

3 2 ~j12
- 2 - - S
g |IPAx PAyII 22X (PAx x,PAx PAY) . (4.21) o
® Now use of Equations (4.18) and (4.21) gives <
-
: , : %
- [ -p ylc € -y ,P_X - ol
g IPAx PAy| < 2(PAx y PAx PAy) 2 j‘:-:‘fi
-’ - - .-1
e = 2(PAx—x,PAx-PAy) +2(x-y,PAx-PAy) : .1
ST
1 2 ol
= - -yl - 1 4.2 ST
< X IIPAx PAyll +2lx -yl pr PAY (4.22)
Consequently o
e .,
o
. -.1
. ‘j:]
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I <2 k-l -4

PAx-PAy S 5oy M-y (4.23) )

1

which is the sought-for result. To establish the lower bound on the inequality . 3
in Eq. (4.15), reverse x anc y 1in Egs. (4.lo) and (4.17), substitute the .' .j
0 _4.-":"

new Eg. (4.17) into Eg. (4.12) and use Eg. (4.23) to give :
e

2 2 A+1 2 R

ly-p yll©-1lx- e - - -P z- — llx- . .24

Y- Py x - P,x 2(y - x,x Ax) Z- 301 Ix -yl (4.24) ST

N '

For the upper bound, we note that the left hand side of Eq. (4.15) can be

written as
—Ily-xllz—lIP y-P xI|.2—2(x-yPy-P X) -2(y~-P y,P.y-P Xx) ) ®
A" A A" A AY'TAT A SRR

- 2(x-y,y-x-~- (PAY_PAX) ) (4.25) AR

upon using Eq. (4.19) with x and y reversed. Further substitution of

Egs. (4.17) and (4.23) yields

2 2
IIy-PAyll —IIx-PAxll -2(y-x,x PAx)

2 2
-y - -~ - + - - .26
<-lly - x| IIPAy PAxll 2lx -yl ||PAy PAxll (4.26) L
2 9A-1 2 KNS,
+ - - - - == lx- RN
“PAY PAxll +2lx-yllly - xll + ||PAy PAxII] < ) Ix -yl o
] which completes the proof. BN
[] ! o
. .8
This result is sufficient to show that ":'.:
3 X T ‘
! VF(x) = 2 Z (x-P.x) = 2M(x-y) . (4.27) SO
| il ;o
» -_—
lf Hence the directions Y, - %, used in the algorithm of Proposition 1 are )
,'_‘ steepest descent directions for F(x). Furthermore the result that, at a limit .
. -
3 point X, y=x shows that VF(X) =0 so x isbydefinition astationary pointof F(x).
[
3 t
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n
= + A - 4.29
2T *n n(yn xn) ( )
2 then
- 2 2 2
- = - - +2 - - 4.30
| "xn+1 znll ||xn+1 xnll +||xn znll (xn+1 X X zn) ( )
' and
o
) 20x g = XX 2) = 24 (XL o Xy o X))
2 2 2
= len‘»1 xnll +||xn znll -“xn+l znll . (4.31)
@
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4.3 The Restrnicted Projection Algonithm

In many reconstruction problems considerations such as computational
complexity and firm restrictions on the functions g and G argue for the
iterates being restricted to one particular set, BM' say. We now show that
the natural modification of the generic algorithm still produces a sequence
with decreasing function values whose limit points are stationary points of
F(x), with x restricted to BM.

Proposition 3. 1If the projections P, are continuous and unique then the

seguence anBM defined by

1 M-1
Yn ° ™D 2 ex
i=1l
(4.28)
1 PM(xn+>\n(yn—xn))' )\ne (0,1)
. . < - . ~ .
satisfies F(xn+l) F(xn) or X .. X for all k. Furthermore if x is a

limit point of x , then VF(x) is normal to the set By-

Proof: The first step is to establish a bound on (xn+l-x ' yn-xn). Let

A R . -y -—y
JHE A . P e e Bl B Rl B Bladh Y S 2 M-S -a s ol aow 4l o
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3 Si zZ =X we h t
ince PM n n+l ave that

2(x -x ) 2 L iIx -x I° . (4.32)
n A n

-x
n+tl *n'¥n

Therefore - : —j

V.
M-1 - -9

2
< E - i .
F(xn+1) = "Pixn xn+l" -0 1

i=1 R
M-1 2 M-1 2 ’
= Z llPixn-xnll +2 E (Pixn- xn'xn-xn+l) + (M-1) len+l - xnll
i=1 i=1
(4.33)
= + - - ’ - -
F(xn) (M-1) (xn X 41 2yn X xn+l)
2
= + - - - -+ I -
F(xn) (M-1) [2(xn X +1'¥n xn) |xn xn+1l| ]
1 2
< - - -
< F(xn) + (M l)(l X )“xn+l xnll
n
where the last line follows from Eq. (4. 32); consequently
<
F(xn+l) < F(xn) (4.34)
since An < 1. Furthermore the inequality is strict unless xn+l =X - Unigque-
r':: ness of projections ensures that xn+l=xn implies that X4k~ *n Vk. Let x
. be a limit point of x_, then continuity of P, implies that iEBM and
L. M-1
- VE(R) = ) 2(X-PR) = 2-1)(R-F) . (4.35)
r'_‘ i=1
3 . <
[_ Since x is a fixed point of the iteration (the same arguments as used in
r N
'. the proof of Proposition 1 shown this) then PMy=x and so the sphere
' s={z:lz-yl <lx-3l} must satisfy SNB, =¢. But the sphere has a tangent
g plane at x, so B, also has a tangent plane there; since ¥ -x is the normal
'. to this tangent plane then y-xZVF(X)/2(M-1) is normal to B,
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If the set BM is convex, then the condition AnE (0,1) can be replaced by R
-—--4
Xn€ (0,2). 1f BM is a linear subspace then PM is a linear map, so for any
A
+ - = - . . .
PM(xn A (yn xn) ) prn + )\PM(yn xn) € By, (4.36)

Thus a unique search direction PM(yn-xn) is defined regardless of A. A
line search can be used to find the minimum of F(PMxn-+XPM(yn-xn)) as a

function of A.

4.4 Restrdicted Profections 4n Phase Retrnieval

The restricted projection algorithm is especially suitable for the phase

retrieval problem for two reasons. The first reason stems from the requirement

that G(w) € cI; this set is a linear subspace and so is a natural choice for

the set BM of the previous subsection. The second reason is that such a

choice is efficient. The problem as stated gives information on g and G

only over the sets c¢I, we will show that the restricted projection algorithm
with BM==cI requires knowledge o% gn and Gn at each iteration only over ;-»»iﬁ
cI, even if the solution g(v) is required over the entire real line. With ET;;Q
the restricted projection algorithm, only the values chn are used until the

{

. ‘-1

iterates converge. At this point Pc§ can be extrapolated to the whole line. '!1
.

The existence of efficient algorithms for phase retrieval has not always been -]

realized, several authors, [14], have proposed schemes requiring storage of )'i

;

:’ values of the iterates from outside the interval cI. ) -!ﬂ
, To show the efficiency of the algorithm, we present the details of the ;
a restricted projections arising in model problems I-III. Upon defining the sét j
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J-lAE{G: G=.?-lg, g€n}, it follows that g€A if and only

f-lg zce F a.

. . 2
Since the Fourier transform preserves L norms,
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is the closest point in Fla to G if and only if FP 1 ©

closest point in A to g, therefore

PAg is easily shown to be

F °a
P_,G= .i"lpAg .
F A
(,9) (v) = m(v)el 3IIW e g
= g(v) , otherwise

if

Therefore, after noting that PCP =P P P and restricting G to «cI,

and

p
g 1A

As the remaining

th =P
follows at PcPB- B.

1

P, G) (w)
( B,

(PBBG) (w)

A cAc

= - +
Ppd = 9-P 9+P PP g

-1
pcgr (FG - P FG+ PCPAPCJ'G)

-1 -1
-P P + P G
G cg’ chcG Pcy PcPA cg'Pc
sets 13i are by definition contained in

. For the record these projections are
i

PB:LG = PcG
= (Re G) (W), if (Re G)(w) >0, w€cI
= 0 , otherwise
= n(uu)ei argG(w)' if we€cl
= 0 , otherwise .
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1’ PB -*P2 and
2

PB -*P3; also we will denote the restricted projection algorithm using these
3

projections and the set BM==cI by RP. Therefore the iterates L become

For typographic convenience we will let P P

->
JT-IA

iterates <%1€c1. Further we shall denote the search directions yn--xn by

H . RP, i iv
n For P Hn s given by

<4

M
H = E;% (PP.G -G ) . (4.44)

The calculation of Hn requires values of 9, and Gn only over clI after
use of Eq. (4.40) for PcPl.

4.5 1&¢ Conditioning and Line Searches

The geometric view of the RP algorithm developed in this section sheds
new light on some of the problems encountered in previous use of p;ojection
algorithms, [ 7], in particular that of constant but small decrements in
F(Gn)' This may be due to local ill conditioning of the problem; with the
geometric interpretation that the sets JT-IA and Bi are nearly parallel at
Gn’ either intersecting at a very acute angle or failing to intersect at all.
Figure 1 shows simple two-dimensional examples of such problems. In both
cases shown in Fig. 1, Hn is very small so that if AnE (0,2) then Gn and
Gn+1 are nearly coincident even though Gn is far from the true minimum.

The relation established between projection methods and steepest
descent methods opens up a wide range of algorithms already developed for
gradient methods. In particular, we note that calculation of F(Gn)

requires evaluation of PcPiGn SO0 we may simultaneously calculate
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F(G +AH)
n n

Therefore a quadratic [15)

convergence beyond simple variation of An in

......
PSP S S W,

H ,
cn

or cubic [16]

P AT R P AR At St Badt e il s & n I S e e g

(VF(G_+AH ),H )
n n’''n

>

(G +AH_-P,(G +AH ),H )
=1 n n 1 n n n

(5]

(4.45)

Mz

(G +XAH -P P (G +AH ),H )
1 n n CcC 1 n n n

o
[}

(G,PCH) = (PCG,H) . (4.46)

line search routine will improve

(0,2).
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5. SECOND ORDER ITERATIVE METHODS . .4
The iterative algorithms for minimization of F(G) discussed in the L
previous section were developed from first order truncations, either afyrroxi- :' 7;
--Q

mating F(G) by its gradient VF(G) or taking pointwise approximations to
the sets A and Bi. In a similar vein we now construct second order algo-
rithms by approximations involving the Hessian J#(G) of F(G) and affine o

approximations to the sets. A succession of such algorithms is constructed,

increasing in accuracy and in complexity up to the standard Newton's method i

‘. for minimization of F(G). In each algorithm a linear subproblem must be _ K
# solved at each stage; typically the subproblem is ill-conditioned and .:!!
»27 requires a filtered inversion. The geometric viewpoint shows that the system ]
can be taken to be a linear least squares problem whose solution is the . A;?

@

closest point to a collection of affine subspaces approximating the sets A

and Bi. We then demonstrate that in this new form the system may be pre-

conditioned so that a filtered inversion is possible without having to - .
calculate an expensive singular value decomposition at each stage.
Unlike pointwise approximations, the affine approximations to the sets

are not necessarily contained within the sets, therefore we cannot guarantee

that F(Gn-+AHn) <F%Gn) for A€ (0,2). However, it is often possible to

show that the search directions Hn generated at each iteration are descent B
directions, i.e. (d/dA)F(Gn'+AHn)A=o < 0. In the interests of brevity only the ; YEJ
form of the algorithms is presented here, proof of these and other similar Tl -!ﬂ

results are left to the reader.

.

v
2 A® L

.
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5.1 The Partial Affine Algonithm

As an introduction to the use of affine approximations we present a

simple extension of RP. In RP at the n-th iteration the set A 1is

approximated by the point PAgn so that the restricted projection PcplGn o

T )
3

4 ¢

is given by Eg. (4.40). However membership of g 1in A 1is determined only T

.
]
P )

bv the modulus values of g across cI; outside of this interval there are L

..

no restrictions. Therefore the affine subspace

:
= h = - 2 1

’ A = {h:h=PP,g +(g-P @), gEL W)} (5.1) i
[ . ‘
contains the point PAgn but is contained in A. So for any function GE€cl ) _}

lc-pGI<k-?  cl=l6-F ', gI . (5.2)
F A . n Lo
n )

- Use of An and the points PiGn as approximations to sets gives an

- approximation Fn to F such that ;?:n

M .
2 2 ]
F_(G) = Ip p,g -PF GlI° + 1};2 Ip,G_ -l
(5.3)
F(G) € F_(G), F(G ) = F (G)
n n n' n o
'
Fn(G) is minimized at the point Ln satisfying the normal equations
.. -1 » ~1 M
; - = + .
(PF PF +M-LDL =P F PP.g j§2 P.G_ (5.4)

giving a search direction Hn=Ln-Gn. If M>1, Eq. (5.4) can be solved by

any regular linear equations package since the eigenvalues of

-




| S e i e D A OO e S A A D R e P M- SO e o ]

- RS
= -

4 e
- S
b o

:t (PC,F_]'P?PC+ (M-1)I) are all greater than unity and less than M. If M=1], N |

then minimization of Fn(G) reduces to the least squares problem -

min lp #P G-PPgl|2 (5.5) -

GEcI ¢ c cC A°n e

which is the focus of the previous paper. In this case the ill conditioning
of the finite Fourier transform Pé?Pc forces the use of a filtered approxi-

mation En to L in which in is the projection of L onto the span of

sy

LT .
.A‘ [ .AA_J_J'J. PR

PILPEETA

the first few eigenfunctions of Pdﬂpc. Since the same linear operator
appears at each iteration, the eigendecomposition need be calculated only

once. As the range of the projection remains unchanged, an extra global

:

restriction on the iterates to this span is implicitly imposed.
Henceforth the algorithm with search direction given by Eq. (5.4) will
L J

be termed the PA algorithm.

5.2 The Gauss-Newton ALgonithm R

Having introduced the geometric viewpoint of algorithms as based upon set N
approximations, we now look at some of the standard nonlinear least squares

algorithms in this context. For solution of the model problem

. SRR |

. M
min F(%) = min 2 fi(i) (5.6)

AN §€n§“ i=1

N
v et
[

'
{ W
i ed A

.

a popular choice of iterative algorithm is the Gauss-Newton method [17] -

‘"

in which at the n-th iteration the search direction ﬁn is given by the

g least squares minimum norm solution to the linear system

140 R
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J(x)2 = -£(&) (5.7)

“~ A . . M . ~ ~A .
where f_(xn) is the vector in R with components fi(xn) and J(xn) is

the MXN matrix with entries

3 2 __.___3__ g
ij(Xn) = 3xj fi(xn) . (5.8)

In the present paper x EGEL2 (R) and fi(x) = IIx-Pixll; the gradient of

fi(x) as defined by Eg. (4.12) is
(Vfi) (x) = (x-Pix)/llx—Pixll (5.9)
so that the Jacobian ﬂ is now an operator from L2 (R) into ]RM defined by
[g(x)z]:.L = (x-Pix,z)/llx-Pixll . -~ (5.10)

Therefore z is now the least squares, mifiimum norm solution to the underde-
termined system, Eq. (5.7), with j(xn) replacing 3(§n); such a z_ gives a
descent direction for F(x).

We next elucidate the affine approximation implicit in this algorithm.
Since Pixn is the unique closest point to X, from Bi' it follows that if

Si(xn) is the sphere

S.(x) = {z:lx -2l €< hix -p.x I} (5.11)
i'"n n n i"n
then B. NS, (x )=P.x . At P.X the sphere has a well defined tangent plane
i i'"n i'n i“n

T, (x)) = {Pixn+z :(x -P.x ,2) = ((Vfi) (x ) ,2) =0} . (5.12)
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This must also be locally a supporting hyperplane for Bi at Pixn, Fig. 2
shows a simple two dimensional example. Ti(xn) can be taken as an affine
approximation to Bi at the n-th iteration, in which case the least squares,
minimum norm solution to Eg. (5.4) is the closest point in ﬂT=l Ti(xn) to
X Since Ti(xn) has codimension one, this intersection is always nonempty,
being in fact an infinite dimensional linear subspace.

Although we bring this algorithm to the readers attention we did not
implement it for two reasons. The first is that the subspaces Ti(xn) are
poor approximations to the sets Bi’ containing no further information than
that already available in the projections Pixn' Second for our model
problems M<3, so that Eq. (5.7) is of very small dimensions. Therefore the

search directions z ~are not likely to be very digferent from those of RP

or PA.

5.3 Newton's Algonithm
The standard second order Newton's algorithm for Eg. (5.6) is based on
the approximation of F(z) near X=X by a truncated Taylor series

expansion

Fx) & F(x ) +VF(x ) (x-x_) + % (x-xn)VZP(xn) (x-x ) . (5.13)

2 ; . .. . . . . N
If vV F(xn) is a positive definite matrix, then the approximation is minimized

at the point yn==zn-+xn, where z, is the solution of

2
v F(xn)z -VF(xn) . (5.14)
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In phase retrieval problems this linear system is ill conditioned and the ... -q
Hessian often has negative eigenvalues. Therefore to ensure that a descent

direction is chosen for which Eg. (5.13) is a good approximation, an eigende-
composition of the Hessian must be calculated and a filtered solution z, 0 &:
used. This approach must be taken if Eg. (5.14) is solved directly. However, ]
as we will show, a geometric interpretation allows the eguation to be rewritten j
in a form in which filtering can be performed without the cost of an eigende- ) !‘
composition at each iteration. i

We begin by noting that the quantities VF(xn) and V2F(xn) are given

by ' @
VF(x) = 2 2 (x -P.x) (5.15) L
i=]1 _
- - N »1
VZF = 2 3 H : .

(x ) = iz=:1 (I -9, (x ) (5.16) .

. 2
where the operators .}(‘i(xn) are the Hessians of the functions fi(x) = IIx-PixII

evaluated at X - They are defined by ' o

H,(x )L’ ®) > 12 m)

(5.17) R

P. (x_+0y) =P, (x )
%(xn)y = lim —2 5 »n . ' .1
a->o RO

Conditions on the set Bi that guarantee existence and boundedness of the
operator Jt; are quite complicated (18 ]. For the purposes of this paper we ¢
shall assume that ,}?i(xn) exists. The only further properties we require are

that .7(; is symmetric and that

¥y v ¥ Dl DR SR A T AvAf_.—-‘—-—,_,Y
- - -
[

v
'
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JO(x )(x ~P.x ) =0 . (5.18)
i“n""n "i’n

The Hessian implicitly defines a first order approximation to the pro-

jection operator Pi at xn by

P.x NP .x_ +H(x )(x-x_) (5.19)
1 ln 1 n n Lot e

= which in turn defines an associated affine approximation Ui(xn) to the set e

E. B, at Pi(xn) - q

U.(x ) = {P.x +2z:2z€Range H (x )} . (5.20)
in i"n i 'n
2
‘. Ui(xn) has more structure than the previous approximation Ti(xn) because
F; Jﬂ;(xn) is not just a projection operator with range Ui(xn)--Pixn but is 1

also a contraction (or expansion) mapping about Pixn depending on whetherx -

35 Bi is locally convex (or concave) in particular directions at Pixn; Figure 3

k" shows a two-~dimensional example of Ui(xn) for Bi a sphere; gtl(x) is

obviously a contraction mapping. Therefore at the n-th iteration we choose a Sl

ii search direction 2z =y -x where vy minimizes the quadratic approximation SO
= n ‘n “n n -
. M 5

~ - - -
- F(y) E ly =P, x -, (x ) (y-x )| (5.21)
| i=1
®

to F(x). The geometric view of Yo is that it is the "closest point" to the

collection of subspaces -Ui(xn) with the distance measured, not in the 3
- standard L2 metric, but as a sum of new metrics. Each new metric reflects
the degree of curvature of the set Bi at Pixn' and therefore the accuracy

of the affine approximation to Bi at Pixn'
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The direction z, of Eq. (5.21) is equivalently described as the least

squares solution to the block system

I —in(xn) -(xn-Plxn)
z = : i (5.22) .

1 —Jt’M(xn) —(xn-PMxn)

Equations (5.22) and (5.14) are not the same, so that the search directions

z ~are different. However, the equations are sufficiently close in form to

¢ show how Eg. (5.14) can be recast in a block form more suitable for numerical
computation. To accomplish this, we note that the normal equations for

Eq. (5.22) are

~
{ M ) M :
S : (2 (1 -%(xn)) z = - Z (1 -J?’i (xn)) (xn - Pixn)
x i=] i=1 -
A -
N N
- M _
= - 2 (x -P.;x) (5.23) :
i=1 B I
3
- after use of Eq. (5.18). 1If the operators I -.9?;_(xn) are positive definite, o ;
- then they possess a positive definite square root (I -.xlf_(xn))l/z which by
! .'
Eg. (5.18) satisfies R
1/2 _ _ _
(1 .)t;(xn)) (xn Pixn) = x Pixn . (5.24)
_‘ Therefore Eq. (5.14) can be rewritten as ;_? B
M 2 M
_ 172 - _ 1/2 -
. [2 ((1 Jt; (xn)) Yy |z = E (1 J?; (xn)) (xn Pixn) (5.25)
) i-1 i=]1
v .
4 s
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tt which in turn is recognizable as the normal equations associated with the - .
t_ block system
4 1/2
(1 Jt’l(xn)) -(xn-Plxn) )
: z = : . (5.26)
1/2
(1 .%M(xn)) (xn-PMxn)

Equation (5.26) has a geometric interpretation, its solution is the solution

to an approximate minimization of F(x) similar to that of Eg. (5.21) using

the same affine approximation Ui(xn) to B, but different metrics.

5.4 1&L Conditioning and Filtering

e VY P —
AT f
e e e 'll- .

We noted at the end of Section 4 that line searches could overcome some

simple cases of ill conditioning. We now consider more complicated cases and
ways to alleviate them.

The first comes from the fact that Lz(cI) is not one-dimensional, as
portrayed in Fig. 1, so that the valleys of the surface T ={(F(G),G):GE cI}
will not typically be straight but rather will be curving through space in
much the same fashion as the classical test case for optimization algorithms,
the Rosenbrock function [16 ]. Experience has shown that second order
methods significantly outperform gradient methods in such examples, but that

such features can easily be sufficiently ill conditioned to defeat even second

s

;. order algorithms.

g The second arises from the existence of the subspace S described in _;Q};
s S
s Section 3 which is, for practical purposes, the null space of Péﬂbc. If a }'f‘\
C | ]
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significant component of the search direction lies within this subspace then

a relatively large step can be taken for a very small decrement in F(G).

* This may lead to "zig-zags" in which steps are taken backwards and forwards

through S so that the iterates do not appear to converge and yet F(Gn) is
decreasing, albeit very slowly. The presence of S also implies that the
Hessian VZF(Gn) will have very small eigenvalues corresponding to directions
in § (particularly in Hessians from model problem I) so that Eq. (5.14) is
difficult to solve numerically.

These problems can be overcome by calculation of the eigendecomposition
of VZF(Gn), filtering the eigenvalues (which are real since the Hessian is

symmetric) by choice of a cutoff parameter € and use of the filter

3
£(6) =0, if o] 2eq ~
(5.27)
=0 ‘ . otherwise ,

then finding the minimum norm least squares solution z of the resulting
filtered version of Eq. (5.14). This scheme produces a search direction in
which F(G) should vary moderétely rapidly because directions corresponding
to small eigenvalues, and thus slowly varying F(G), have been filtered out.
We denote such a filtered Newtonian algorithm by FN. The resulting direction
z, is not necessarily a descent direction (VzF(Gn) may have large negative

eigenvalues) so we shall also consider a variant of FN wusing the filter

£(g)

o P if 0?63
{5.28)

=0 ’ otherwise .

The resulting algorithm is termed FNP.
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The problem of global ill conditioning, in particular the presence of
multiple minima due to possible nonuniqueness of the phase retrieval problem,
cannot be addressed by similar modifications to these undertaken for local ill

conditioning simply because the algorithms are derived from local analysis.
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5.5 Block Filtering

Having shown the need for filtering, we now show that Eq. (5.14) can be

—

solved by a filtered solution of Eq. (5.26) in which each block is prefiltered
and a standard least squares algorithm then applied (avoiding the cost of a .
singular value decomposition of the block matrix). We begin by noting that if

our algorithm is to be efficient then we must solve

2 ~
PCV F(Gn)H = -PCVF(GD) : (5.29)

rather than Eq. (5.14), so that values only over the interval c¢I are used.

(For this reason, Eg. (5.29) rather than Eg. (5.14) is also used in FN and

FNP). We also note that the Hessians are not complex valued linear operators

5;;# since it will be obvious that for an arbitrary complex number o

s

0 (G ) (aH) # o (¥ (G IH) . (5.30)

. Rather they are linear operators on the pair of real functions (Re H)(w) and
(Im H) (W).

-‘ The ability to do block prefiltering will depend upon the special form
of the Hessian in Eg. (5.26). For the operators J%E and JEE associated with
P2 and P3 it is obvious that Pc‘%; EJ(J,’.. In addition, simple calculations

'Y establish
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(Re H) (w) (Re H) (w)
JCNG ) = R if (Re G )(w) >0
20 e ) () 0 n
! ' - we€cI
0] .
’Ol , otherwise (5.31)
and
(Re H) (W) sin26 -sin 0 cos © (Re H) (w)
X, (G_) - niw
3'°n G_(w) . 2
(Im H) (w) n -sin 6 cos © cos © (Im H) (w)
(5.32)
where
6 = arg Gn(w) ’ we€el . (5.33)

—

The operators I -.x; can be represented by 2 X2 block diagonal operators;

at each point « the blocks are

0 O
(1 -sz (G )1 w) = ¢+ if (Re G )(w) >0
0 1
= é 2 ' otherwise (5.34)'
1 - n(w) 0
sin® cos 6 ]Gn (w) I sinB® -cos ©
[I-J(3(G )Ji{w)y = .
n , .
-cos 8 sin®b 0 1 cos © sin ©
(5.35)

The spectrum of each operator I -.x; is now seen to be simply the union

over w of the spectrum of each block. For 1I -.76 this gives a spectrum
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- €§> 0 and one of the following filters
@ )
- f£(0) = |o|l/2 sgn 0, if |o|>e3 _
- = 0 . otherwise (5.36)
b. s
Tad
e
f(o) = o172 , if o2 €,
= 0 ' otherwise . (5.37) 1
The prefiltered block is then defined as ) ."
- el - n(w) 0 : -
. 1/2 sin® cos |Gn(u)) | sin B -cos 6 o
(1-,6))." " (w = ]
G 3"’ n'f . . . .
: ~cos & sing cos 8 sinf R
° 0 1 S
Qs (5.38) B,
It is reduced in size by eliminating those equations for sin 6(Re H) (w) - _ij
cos 6(Im H) (w) that are associated with elements in the spectrum that are 'i:.i
o ®
x filtered out. T3
o From Eq. (4.39) O, has the form
- ' 4
* o
o 150 ]
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consisting only of the points {0,1}, so 1 —J(Z is its own square root.
Therefore the only prefiltering that needs to be done to (I -sz)l/z is to
eliminate all equations for (Re H) (w) that correspond to zeros in the block
spectra. For I -th, the spectrum will take on a range of values. Some of
these values may be small or negative if for some ww the quantity
/2

(l-n(w)/IGn(w) I) is small or negative. Consequently (I -Jt;)l either is
not well defined (i.e. has imaginary eigenvalues) or is ill conditioned, or is

both. To prefilter the block (I -.%3)1/2 we therefore choose a parameter

ks
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_ =1 =1 ,
Jt’l(cn) = I-9 Péipc+.§' Pé”%(gn)pc‘gpc (5.39)

so that

=1 ,
(I—Pé%’l) (Gn) PCJ' PC(I -Jfl’\(gn))PéﬁPc (5.40)

where (I -Jg(gn)) is in block diagonal form over <cI:

L2 0
sin¢ cos ¢ lg (v) | sin¢ -cos ¢
[1-%(g)]1(v) = n (5.41)
n . .
-cos ¢ sin ¢ cosd sin¢
0 1
with .
¢ = arg gn(v) ' veEcl . (5.42)

Unfortunat\ely I —P(,:;Z_’L does not possess an obvious symmetric square root.

However an asymmetric root can be found by noting that
- = - P .43
(1 P%(Gn))ﬂ G -P, lc;n (5.43)

is the normal equation associated with the least square problem

min I(I -3 (g )) m"eﬁ’cﬁ - pcpApcypcGnnz (5.44)
H .

so that we may take for the block (I -P’:,:)'ﬁ)l/2 the composite operator

(1 -.)?1’\) l/z(Pé?'Pc) and prefilter each component. The filtered component

1/2

£ ; the component

(1 -Jtl’\)é/z is calculated in the same fashion as (I —.}(3)
Pé‘%c requires further manipulations before prefiltering. Let PCJPC have

fas + . . .
an eigendecomposition ULU , then as U is a unitary operator the solution

Hn to a prefiltered Eq. (5.26) is given by Hn=ULn' where Ln is the least

151

|l

,’ v
t

Y

AT AR A o i AN SR AR I E Sl on ol A el And /et Sk S A Sl Gl u
« -

. . .'<'.

. . ’ i
H Lt e
P A
) : . K
Q,A_.‘ PSR

i

v. P 1 -. E} .".v




-
s

|

'
,
L
-
L

A e ZaCENe She e AR um e o
AR, e
. P « e b S
G P
. £ . .
I ..
.
- -

D R A Sai Agh Wl Sl O A b B At A S0 S ahd o sk ohe sma-sad waesane o o R

.

squares solution to e

- wrd

S LT

- 1/2 '
(1 w;\(gn))f ul pCPApé?PCGn

L = (5.45)
(1-2¢ (6% P.G -G . Lo
i n £ in n Q

where I may be filtered using Egs. (5.36) or (5.37). D
The reason for choosing to solve for Ln instead of Hn lies in the - l

F choice of the pointwise discretization used in numerical calculations and in

the form of the IMSL subroutine LLSQF used to solve the discretized Eg. (5.45).

This subroutine uses an adaptive QR algorithm, at each stage a column is

chosen from the block matrix and incorporated in the QR factorization

calculated at the previous stage. A running estimate is kept on the condition

~
number of R, if this estimate exceeds a use defined parameter, ATOL, then the

routine halts and computes a minimum norm least squares solution using the
most recent QR factorization and also sets components in L corresponding to
unused columns to zero. For a solution H this corresponds to setting point
values of H(w) to zero; for L it is setting components of L in an eigen-
function expansion to zero. Our analysis of ill conditioning indicates that

such components are likely to be zero anyway, so we believe Egq. (5.45) to be

the preferred form for solution.

Jif We shall term the algorithm based on Eq. (5.45) with the filter given by -
L Eq. (5.24) the SQFN algorithm, and that based on Eg. (5.45) with the filter
®
' given by Eq. (5.37) the SQFNP algorithm. SQFN incorporates more information

about the Hessian at each step, but SQFNP gives a guaranteed descent direction

H at each step.
' n
. J
l." _": ﬂ
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" 6. NUMERICAL RESULTS .» C ;

We now present results for the solution of the discretized model

problems using the various algorithms so far proposed and show the discrete

X

approximate solutions G generated. The main measure of performance used in : .j!

. . . . . N . . O

this section will be the number of iterations n required by the algorithm 3
i

to reduce the function F(Gﬁ) to below a prescribed value. Since we are 3}i»”

interested more in the comparative than absolute behaviour of the algorithms
we take as the benchmark case the RP algorithm and consider the gquantity
n/n where n is the number of iterations required by RP to reduce F(aﬁ)
4 to below a prescribed value.

;;e ill conditioned nature of the problem means that this is not the
- best of measures. Difficulties are encountered through behaviour such as the
erratic decrease of F(an); often a succession of iterates produce little

- change in F(an) and then a sudden decrease is recorded. 1In some algorithms

the iterates may converge to a particular value & whereas in others they

For these reasons the results reported here are intended as a guide to the

behaviour of algorithms on real problems rather than a prediction. However,

A x

Ei fail to converge so that F(Gn) and F(G) can be considerably different.
p

b

L ¢

g

poor though the measure is, there is none other available for use that does

not require prior knowledge of the solution. ftl.;{

{
4
# -
(] 6.1 Discretization, Test Functions and ALgorithms S °
. R
.
The choice of discretization in these calculations was determined by i )
0y
the condition that it give an accurate, efficient approximation to the N -y
]
¢ .
3
4
L
b
. 153




————
.
R

-

TV W ¥ v

S e B L B A A B o F A B i e R ol s f s e O I ——
B Sl B n ]

finite Fourier transform and that the discretized projections be easily
calculated. Therefore a discretization based on N point Gaussian
quadrature was chosen; the previous paper shows its accuracy and efficiency
and its pointwise nature allows easy evaluation of projections. The finite

r G

dimensional problem now involves vectors §, ('§€CN whose elements c_;k K

are to be approximations to the function values g(pk) ' G(pk) at the

abscissae of the N point Gaussian quadrature rule on cI. Vectors

k

m, ﬁ€]RN are formed with components mk=m(pk), n =n(pk) where m(v) and

k

~ A x ~
n(w) are the known moduli. Matrices W, E‘€CN N are constructed with W

being a diagonal matrix whose k-th entry is the weight w of the quadrature
2nipkp2

rule and with F having entries £=2 . This construction gives as

Fx
the discretized model problems

AAA

Find vectors § and & such that §=FWG and

I m

lg, | = m
I1: g, |

1
o
(]
P)
A\
o

III: ngl =m, lGo| = ng
where @ and fi are specified.

Since the metric for all analysis so far has been | |l2 the numerical

~ AN
calculations were done on a rescaled version of the eguation g=FG,

A1/2/\
g

W25 = WwY%aY?) @t %) (6.1)

GY2% ana W%

are now good approximations to the norms llGll2 and llgllz, and Ql/zf‘ﬁl/z

with this rescaling the Euclidean norms of the vectors

is a good approximation to Pc,’iPc in the operator norm induced by II-II2.
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The two test functions chosen for the model problems were

3 .[ (w) “ ] .
— Ti|P_ {—} +P (— .
| 2 (2) .
Gl = &Y, Giy =t L3l 4ke (6.2) :
5 where Pi(u) is the i-th monic'Legendre polynomial. The Fourier transform ) ;»7f.
3 . - N
1 1 . - -
X g (v) of G (w) |is s
< ' o
. ‘n s . B ‘.:
E] glv) = 2 8inemv-ilec (6.3) o

)

g2(v) has no closed form and was calculated numerically. Both functions were

1 1
used as test cases for model problem I, G and g as a test case for

problem II and G2 and 92 as a test case for problem III. The discrete )

~

approximations to G’ (w) and gl(v) are denoted by ' and gl.
All numerical tests used the following basic algorithm

l: Choose an initial guess G0

A

2: Given iterates an and én compute a search direction Hn

3: Calculate a step length An and new iterates

Gn+1 Gn an ’ In+1 FwGn+l

A~

4: 1Iterate steps 2 and 3 until the convergence criteria are satisfied.

The convergence criteria used in all calculations were

2
A -5 ~ -3
F(G ) <10 or E ﬂAn_an_kH <2x10

k=0

(6.4)

together with an upper limit Nmax on the number of iterations. The sum of
the last three steplengths, rather than "Anﬁn“ alone, was chosen as in ill

conditioned minimization problems "stop-start" behaviour is often noticed.
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;.t That is a large step often followed by one or two small steps after which o
another large step is taken. This feature was often observed in the use of

any second order algorithm, differences in magnitude of successive step ) p
E lengths by factors greater than 100 occurred fairly frequently. .

,
o
X

5 r

Three different forms of initial guess were used

a4 s

o e
s
)
.

'
P

1. GO =0 *

T U Y,
»

»
V. J T

1
Goz —(l-el) (l+elr )GQ

-3
] 3. GOJL = 10 r J
4 »

L_ . Guess 2 is a damped perturbation of the true solution G* with 81 repre- .
® 4
’ senting the noise level. For convenience we shall express this level as a . .1
percentage, e.g. €1= .2 will be expressed as €l=20% noise. The variable

-

r, is a random complex variable with modulus uniformly distributed over ]
{0,1] and phase uniformly distributed over [0,2T]. Guess 3 represents a ,_.
-1

small totally random perturbation about the origin, again for convenience such .
guesses shall be denoted by €l= 100%. .
T4

®

4

6.2 Chodice 04§ Step Lengths A

The first results reported are those on determination of an optimal

* choice of )\n. Three possibilities were considered

- 1. >\l =1
. n BN
>. 2. )\: =r where r is a random variable uniformly distributed - .
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3. )\2 is the approximate minimum of F(an+}\nﬁn) as a function of " A

determined by Powell's cubic line search algorithm [ 16 ] with the

. . . . 3
following convergence criteria on the iterates k>\n

- .
3 3 ~ 34
- A + Lo

(kxn k-1 n) . F(Gn k)\an) < .02 q
3 ~ : RO
k)‘n F(Gn) - ;
VE(G_+ M) F@& + M) :
nAknn . nAknn < .02 (6.5) ?

VF(Gn) F(Gn) k<5
The performances of A:; were compared by running each possibility on each - .J.
3
model problem with the appropriate test functions using the RP algorithm. )

The parameters c=2, N=40 and Nmax= 50 were chosen and each problem was

started with three different initial guesses with €_ =20%, 60% and 100%.

1

The results were remarkably uniform over all test cases of model problem, *

test function and initial guess. Choices )\i and )\z performed almost
identically with >‘x31 just under a factor of 2 better. Almost always only one .'
extra function evaluation was required for )\2, i.e. the convergence criteria 1
4

of Equation (6.5) were satisfied at k=1. This extra computation almost - ¢
exactly balances the savings in the reduced number of iterations so that all V .J

three choices incurred the same computational cost in reduction of F(an) to

L o
R S \

'-n—"

a specified value. However the greater flexibility of >‘n led to its

adoption in all subsequent calculations.
The convexity of the set c¢I implies that F(an+)\ﬁn) <F(Gn) for all B

A€ (0,2), the computations showed that this inequality still frequently held N ‘.‘:‘."\
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for X € (2,3) but almost always failed beyond this. Almost all the values of .

ki lay in the interval [1,2.5] so in all subsequent line searches an initial

3 . .
guess of A" =4 was used. As an experiment further runs were made with the

On
fixed choice An==2 but these compared very poorly with ki. i _;‘
6.3 Initial Guesses and 122 Conditioning e

We now present some results on the ill conditioning of the model

problems. The first set are from efforts to estimate local ill conditioning

vV

through the effects of small perturbations of the data m(v). They were

v
'

obtained from model problems I-III with the appropriate test functions, para-

meters c¢c=2, N=40 and Nmax=40 and using the RP algorithm. Random

relative errors of size €, were induced in the vector m representing the
data, then the algorithm was started at the true solution Gi of the un-

perturbed problem. Table 1 gives some typical results for two perturbations
€,=1% and €_=5%. The data appearing is the percentage relative error in

2 2
¢ (100.0&-8"M/1E )  and the value F(G) where G is the approximate

g solution to the perturbed problem reached by the algorithm.

T. The data indicate that the problems are locally well conditiocned in that

3 there exists a possible nearby solution to the perturbed problem to which the
iterates tended and whose distance from the solution of the unperturbed fi}ﬁ

o problem is of the same order as the perturbation. We cannot assert that the » i %

.

solution does exist for in almost all cases the algorithm terminated with < g
F(G ) <107° or n>N . Termination due to convergence of successive ; ;Ss

L
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iterates did not occur although they always appeared to be circling about some
common point. This problem was encountered throughout these test computations,
however we delay further discussion until the presentation of results on
filtering.

The second set of results indicates the global ill conditioning of the
problem, particularly with respect to the natural measure F(a). Figures 4-6
represent three functions é found as solutions to model problem I with test

> > anda 8x1074,

x x - -
function G2 with values F(G) of 8x10 ~, 7x10

e

) X
respectively. Figures 7-9 show the G's obtained by repeating the runs for

model problem III holding all other factors (algorithm, initial guess, etc.) ) .i
constant. The values F(é) were 2 Xlo-z, 3><10-2 and 7><10_2, respectively. ;:1
Although all functions é resemble EZ to some degree the wide variance )
among them suggests that the surface T ={(F(G),G):G€cI} is .very rugged. ) ‘.“

Furthermore although the functions in Figures 7-9 appear graphically to be

closer to 62 than those in Figures 4-6 the function F(a) holds them to be

substantially further away.
In general the solutions G to model problems II and III were, as
suggested by these graphs, definitely more acceptable as solutions to the

phase retrieval problem than solutions to model problem I; nevertheless the

values F(G) for II and III were almost always a factor of 10 to 103 greater

than those of I. A tentative ranking of the problems in order of decreasing

ill conditioning would be I (with &1) >II>I (with 82) >III. As expected

more information gives better solutions, however we were not sure to what

degree the particular choice of 61 with its large discontinuity at w=c

-
-
. @ S
e e
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influenced this ordering.

We conclude this subsection with a brief mention of an anomaly that lead
to use of initial guess 3 rather than guess 1. As noted in a previous paper
(19] it is possible to show that if iterates possess certain symmetries then
almost all the algorithms preserve these symmetries. In particular with the
highly symmetric choice of 60==o some form of symmetry was always preserved
yet the algorithm often converged to reasonable pseudo~solutions. One such
example for model problem I with N=40 and c¢=2 1is shown in Figure 10,
it displays a symmetric solution é for which F(é) <5x10 -. Therefore, if

no a priori knowledge is available for 6, a small random perturbation is a

better initial guess than zero.

6.4 Filtened PR and PA Algonithms

Having determined the problem to be globally ill conditioned we sought to
produce a better conditioned global problem by filtering out the local ill
conditioning of the finite Fourier transform discussed previously. This was
done by projecting the search directions ﬁn {(and therefore the iterates &n>
on to the span of the first P eigenfunctions of chrPc whose associated
eigenvalues had magnitude greater than a prescribed cutoff 53. As a test
this filter was applied to iterates in the RP algorithm producing the filtered
restricted projection algorithm (FRP) and the algorithms compared on all model
problems with parameters c¢=2, N=40 and Nm =40. Two choices of cutoff

ax

€3=.9 and €3=.25 were considered, these values gave projections on to

subspaces of dimensions 15 and 18, respectively.
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As measured by F(G) FRP performed very poorly compared to RP for
€3= .9. At best 1.5 times as many iterations were needed to reduce F(an) to

comparable values; very often FRP failed in that it ran the full Nmax
iterations reaching a point é such that F(E)> IOOF(é), where é was the
final iterate of RP under the same conditions. FRP substantially improved
with €_,=.25, now averaging 1.5 times as many iterations, but still occasionally

3

failing in the manner described above. However, if measured by the distance

~

between final iterates the algorithms appeared to be more equal, IG - &Il was

usually less than .25 for all algorithms.
The disappointing result was that FRP did not display improved conver-

2

K=0 n-an-kH' Iterates

gence properties over RP with regard to the size of L
still appeared to wander through the subspace without much effect on F(Gn).
It seems that a fifteen dimensional subspace 1s still too large and gquite
severe restrictions (P~5) must be used to ensure converyence to a minimum.
These results were borne out by the results and - -m ariscn of the PA and
RP algorithms over all model problems for rarameter :airs <. NI of (2,40),
(2,32) and (1.5,22) and Nmax==40. A varietv of filters were used but even
for the best, using the cutoff of Equation (6.6), the results nad a large
variance and averaged out so that PA still required about the same number of
iterations to achieve the same improvement in F(én). Again termination was
due to reduction of F(a) or n2=Nmax and not to convergence of successive
iterates. One reason for this is that for the parameter values ¢ under

consideration almost all significantly nonzero eigenvalues of PCJTPC have

magnitude ~1 so that the filtered inverse (PCSFPC);l and the Hermitian
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square chr_lPCJTPC agree on most functions, therefore the search directions
produced by the algorithms are usually quite close. It was noticed that the
relative performance of PA did appear to improve with decreasing ¢,

averaging about .9 for c=1.5.

6.5 Relative Penformance of Second Order Algorithms

We now present results on the relative performance of algorithms FN,

FNP, SQFN and SQFNP compared to RP. They are not comprehensive; considera- e 1

tions such as the number of parameters at the users disposal, failure of the

N YOO

IMSL subroutines on certain eguations and computational cost prevented this.

The algorithms were run on each model problem with the parameter pairs (c,N) ‘ A
being (2,40), (2,32) and (1.5,22), N o« ranging from 15 (for computa- ~ 3&
tionally costly algorithms) to 50 and with perturbations in, the initial gquess X \i%
of €l==20, 60 and 100. The cutoff parameters €, in Equations (5.26), ;’} o
(5.27), (5.34) and (5.35) used at the n-th iteration, were calculated from ?;1,fi

quantity

p = max{min{4.200 _.H . I-.024, .2}, .002} . (6.6)

For FN and FNP €3==p, for SQFN and SQFNP €3==p/3. The IMSL subroutine
EIGRS was used to calculate the eigendecomposition of VzF(an), the subroutine

LLSQF to calculate the minimum norm least squares solution of Equation (5.42),

e with the upper bound ATOL on the condition number of R in the QR factoriza-

tion specified to be 83/10.
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The results in Tables 2-5 aive first the averace verformance of RP on
each problem in terms of the final value F(é) and the number of iterates n
needed to reach this. The remaining entries are the ratios n/n where n is
the average number of iterations needed by the alternative algorithm to reduce
F(aﬁ) to below F(é). In some cases the algorithm on trial failed to reduce
F(aﬁ) to below lOOF(E), such cases are marked by a *. 1In other cases the
alternative algorithm converged but with F(ﬁﬁ) larger than F(aﬁ) in which
case the n of the ratio was altered to the number of iterations required by
RP to reduce F(aﬁ) to below F(aﬁ).

The remaining tables show the effect of (and thus the need for) filtering.
Table 6 contains pairs giving the range of the number of eigenvalues preserved
at each iteration by the filter in FN and FNP. The final table for SCFN

.

and SQFNP shows two pairs, the upper giving the range of the number of rows
in the filtered block equation (5.40), the lower pair indicates the range of
the number of columns used by LLSQF. Typically the larger figures in the
range occur as F(an) decreases and én converges, however the "stop-start"
behaviour of the iterates often caused these measures of filtering to also
jump about.

Finally we present graphs (Figures 11-22) of final iterates for RP with

parameters c¢c=2 and N=40 for each model problem and €, =20%, 60% and

1
100%. As noted previously final iterates varied much less than final values
of F(an) and the graphs are typical of all final iterates for these problems.

Some points worth noting on observed algorithm behaviour are given. RP

hardly ever halted due to convergence of the sequence an, iterates exhibited
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steady "zig-zagging" with accompanying small but steady decreases in

F(an) after an initial burst of reduction in the first 10 or so iterates.
The higher order algorithms did give convergent iterates on a number of
occasions but some limit points were not true minima since at én VF(an) # 0
but VF(an) lay in the null space of the filtered Hessian.

The cutoff parameter given by Equation (6.6) was derived after some
trials and errors and is certainly problem specific. However it performed
satisfactorily for FN, FNP, SQFN and SQFNP in that it generated An that
almost always lay in the interval (.1,1.5), and for FN and FNP started close
to the true solution the expected value of Anﬁvl was always observed.
Moreover it was noted that RP gave the best initial decreases in F(an) when

started with e]_= 100%, so in all algorithms the final search direction ﬁn

was taken to be a weighted linear combination of the ﬁ; determined by the

particular algorithm and the ﬁi of RP, i.e.
€
~ ~1 .1 ~2 3
Hy = M (.l+e ) * Hy (.1+€ ) : 6.7
3 3
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7. CONCLUSIONS

The i1l posed nature of phase retrieval induces enough variance in the

71-11':"
e T T R I NEARNEREN

data to prevent the drawing of quantitative conclusions, however qualitative

1
|
i
i
i
~
results are apparent. As expected FN and FNP show the best performance when . .Q
iterates are close to the true solution &%, with FNP displaying greater

robustness in regions further away. Close to the solution SQFN and SQFNP :-f?'-

do not improve upon RP, but they give the best results when started from a ' q
random initial gquess. Since SQFN, SQFNP, FN and FNP are all filtered variants
- of the same basic algorithm it should be possible by a judicious choice of . 1
filters to combine the best features of all in one algorithm; to do so e

L
requires further study of the block filterings of subsection 5.5.

. . N3 A
As measured in terms of the computational cost to reduce F(Gn) to a

certain value RP appears to be the certain winner and it is difficult to see o
how any other algorithm can be improved enough to compete with it. Of the : .
second order algorithms SQFNP seems to be the most efficient, requiring a ‘;
matrix with .8 the number of rows as SQFN to give approximately the same 4 R .1
R

results. Furthermore the cost can probably be substantially reduced by : »-fj '-,-_.‘-‘
taking advantage of the sparsity and special structure of the blocks in - «
Equation (5.42). L“..
Tables 6 and 7 confirm that the essential dimension of model problem I is -]
twice the number P of significantly nonzero eigenvalues of Pc’?Pc' The )]
essential dimension of II and III is harder to estimate although a reasonable L .1
upper bound would be 2P + N. Certainly for N=22 and 32 the problems
-

ST

-

.
o

165




v,
PO R

SEET

=T

———

P

TV, g —T

R

appear to be almost well posed. The tables also indicate that II may be more
(locally) ill conditioned than III although this may be attributable to the
form of the test functions.

The oscillatory nature of the graphed solutions suggests that further
filtering is necessary and that local filtering to the degree done here is
insufficient to give a well posed problem. Three options for further
conditioning are:

1. Use of a more restrictive local filter

2. Regularization of F(G) by addition of a penalty function e.q.,

ag||?
FR(G) = F(G) +a"§;“ (7.1)

3. Use of the algorithm above followed by smoothing of the numerical
~
solutions G*.

Each option has its attractions: with use of 1 the iterates would be
restricted to the span of the first 5 to 10 singular functions, these are
known to be smooth and slowly varying so a linear combination would also be
reasonably weil behaved. Note that this also appears if the interval size
¢ 1is reduced to around .75 or smaller, thus having less information may
actually give a better solution. For 2 a suitably chosen penalty function
can easily be accommodated within the theory of algorithms based on projections
developed here. Finally visual inspection of the graphs shown indicates that
the functions G* are often very perturbed but are basically similar to the

true solution &  so that option 3 will often give an acceptable final

solution.

166

T —— D S P S P P T ooy

N
.
-

AN T S S

-,
Gl
‘. Lt . 1 . R . .
! «_'_a...t..'-'_.'. L_.'

i

PR
.
.

e

!
A

-
a®

P PGP




PTeTeIEmINLW

¥

[

TR

(and
v fo Tetam

Daw e o

A R T T e e S e AT B B S A A A SN S R R - > T
S

R

AN

APPENDIX A. ON THE EXISTENCE OF MULTIPLE SOLUTIONS TO THE 2-D PHASE _'-——;w_"
RECOVERY PROBLEM I

.. {

1

The two-dimensional phase retrieval problem can be stated as: "’3i;j

2 . ) A

Let A ardd B be bounded subsets of IR . Given the LN
S

information that g(zl,zz) is the Fourier transform of a function g
G(wl,wz) with support contained in B and the values m(xl'XZ) = :-7:§j

|g(xl,x2)| on A, find the phase of g on A and reconstruct G.

The phase retrieval problem does not necessarily have a unigue solution.

The aim of this appendix is to derive from a given solution pair g and G -

)
necesday conditions for the existence (and characterization) of alternative ‘f:
solution pairs h and H. An intuitive start for such an investigation is '}fl
the simple result that if £(z) is an analytic function of the complex ;:"
variable z then so is f£f*(z*) and f£(z) and £f*(z*) have the same modulus :;;{}55

3 s

for real z. This suggests that if a solution g can be factored into a :t~5xt-

Ty Wy}

product of analytic functions 9, and 9, then the entire function of two

L e

L

3 = L] ® * : . A REREEA

complex variables h(zl,zz) -gl(zl,zz)gz(zl,zz) is also a possible solution. 13
The main result of this appendix is to show that all possible alternative \5i
o

solutions must be of this simple form. "
.

A.1  One-Dimensional Results R

The following results from the theory of functions of a single complex

variable are required.

Theonem A.1: Paley-Wiener Theorem [20]. Let B= (b,,b,] be a bounded inter-

val in R. Then for any GGLZOR), G#0 on B, the transform
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2 .
g(z) = fb e %G (u) du (A.1)

is an.entire funciion and there exist constants o and B such that

—blImz
o e if Imz>0

|9(2)| < . (A.2)

B e if Im 2<0

The next result is the fundamental theorem providing the necessary
machinery to characterize all possible solutions to the phase problem both in
one and two dim‘ensions. Although independently derived by many authors [3,21],
it appears to have been first stated by Akutowicz [8.9]. We state the

result as originally presented there.

Theorem A.2. Let € be the class of all functions gEL2 (R) satisfying
1. Jg(x)|=m(x) #0 vV x €R
2. g=%&G where support of G is contained in a bounded interval
B of R.

Then any two functions g, h€%¥ are related by equations of the form

- h(z) e B2 g (1) g (2)
. (A.3)
S - i.)
' B(z) = (
' g=1 ‘7%
. where the zy form some subset of the zeros of g(z). The function
. (z-z*)/(z—z ) is termed a Blaschke factor.
'S ')
L
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Lemma A.1: A necessary and sufficient condition for the infinite product b..-@

B(z) to converge is that [9]

% | Im z£|
=1 l+IzQ| .

A sufficient condition for the convergence of the infinite sum is that G(u)
have only a finite number of jump discontinuities over B.

It is easily shown that if G -has support in an interval B and if
h(z) =B(z)g(z), then H(u)==(37-lh)(u) also has support in B. Therefore
combining theorems A.l, A.2 and lemma A.l gives the following statement on

existence of multiple solutions to the 1-D phase retrieval problem.

Theorem A.3: Let A and B be bounded intervals in R with a modulus
m(x) specified over A and a solution pair g and G be given to the

corresponding 1-D phase problem. Then if m(x) has an extension to the

entire real line such that m(x) >0 and G(u) has only finite jump dis-
continuities over B as well as being nonzero in neighborhoods of the end-

points of B, then all other solution pairs h,H are given by

h(z) eiaB(z)g(z) (A.S)

H(w = (F 1h) (u) (3.6)

where B(z) 1is any finite or infinite product of Blaschke factors and QER.

The conditions of Theorem A.3 imply that a solution g(z) has a

Hadamard factorization
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i (0+Bz)

b gl{z) = ‘g(O)le n (l - -zi) (A.7)

- where a,B€IR, which may be rewritten as

A B
LEN Zp 7ML g€ (n-0) %

91(2)92(2) (A.8)

g(z)

11}

where A is a subset of the natural numbers N. Theorem A.3 thus states that

any solution h(z) has the form

h(z) = ety gl(z)g;(z*), Y €ER (A.9)

i.e. that all possible solutions are in one to one correspondence with all

possible factorizations of g(z).

A.2 Extension to Two Dimensdions

Conditions that multiple solutions to the 2-D phase retrieval problem
must satisfy can be deduced from the 1-D results. To begin, suppose that
the problem as stated has a solution pair g(zl,zz), G(wl,wz) where

z=x+1iy and w=u+iv denote variables in the transform and physical

domains, such that G(ul,uz) has only a finite number of jump discontinuities

'. over B. Then

Lemma A.2: 9(21'22) is an entire function of the complex variables zl,22

Ty Ty T Ty T T
[ A )
. .

of exponential growth.
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Proog. After defining the quantities

+
max{ul: (ul,uz) € B}, uz(ul) = max{uz: (ul,uz) €B}

c
=l 4

n

n

4 . - : . 1
mln{ul.(ul,uz) € B}, uz(ul) mln{uz.(ul,uZ) €B;

g(zl,zz) can be expressed as

+ +( )
ul izlul 22 ul i22u2

g(zl,zz) = j. dul e du2 e G(ul,uz) . (A.10)
u uz(ul)

Writing g(z,,z,}) as g_ (z,) to indicate that "g(z, ,2,) is to be considered
1" 2 22 1 1°72

as a function of z, only with z, fixed gives
o
1 izlul
gzz(zl) = I- G(ul,zz)e du1 (A.11)
u

Therefore by Theorem A.l 9, (zl) is an entire function of 2, of exponential
2

growth. A similar procedure shows that 9, (22) is an entire function of z5.
1
An immediate consequence of this lemma is that if a solution exists then

the modulus m(xl.xz) has an analytic extension to all of 1R2, which, under
the assumption that m(xl,xz) >0 V(xl,xz) , is unique.
Now let h(zl,zz) ’ H(wl,wz) be any other solution pair to this problem;

then hxz(xl) and gxz(xl) must have the same modulus mxz(xl) over the
= : H i.e. luti
set sz {xl (xl,xz) € B} i.e hxz(zl) and gxz(zl) are both solutions

to 2 1-D phase retrieval problem. Therefore by Theorem A.2, Lemma A.l and

the above assumptions on g, G and m we have that
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[
k
.-
b.
;l io(x,) iB(xz)zl
hx (zl) = e e Bx (Zl)gx (zl) (A.12)
2 2 2
where a(xz) and B(xz) are constants dependent on X, only and B(z) 1is
an infinite product of Blashke factors formed from the zeros OZ(XZ) of
- -
o 9, (zl). Thus if nQ(xz) are the zeros of hx (zl) and the sets Xx ’ Yx
S 2 2 2 2
N are defined by
> [+ ] (<]
x. = U {p,(x,),x}, Y = U {n;(x,),x,} (A.13)
: x2 2«=l 9, 2 2 X2 £=1 2 2 2
| it follows that
®
; Yy ex ux* , x <y vy, o . (A.14)
2 2 2 2 2 2 _
-
{ Let X and Y be the sets of zeros of g and h respectively. It is
_m known (22] that the zeros of a function of n complex variables form an
- -
; analytic set of dimension (n-1) which in turn is the union of analytic mani-
|
[ folds of dimension (n-1) and a set of singular points of dimension at most
F (n=2). Therefore for almost all x2 the points (pk(xz) ,x2) and (nk(xz),xz)
i are members of analytic submanifolds of X and Y respectively; that is for
:: < each k there exist maps
. 3
by :C > X ¢ (%5) = (o, (x;),%,)
- d (A.15)
= wk: +Y wk(xz) = (nk(xz),xz)
o
such that for almost all Xy ¢k and wk are analytic in a neighborhood
Nk(x2) of x2. Furthermore for almost all xz, the maps
®
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(6,04}

are analytic in neighborhoods Nk(xz) of x

=]
k=1 2

dependence of Nk(x2) on k).

We now suppose that the zeros ok(x2) are well separated, i.e.

* ) .. 4Q
Ok(xz) # OQ(xz) or pﬁ(xz) Vk,? k#L (A.16) i
) "
. = K] . " ~-'<|
Since by (A.12) yk(xz) pk(xz) or pk(xz) the analyticity of dak and L’k -
e - .J‘
imply that N e
x, * S
yk(z) = pk(z) or ok(z ) VzENk(xz) . (A.17) o

Therefore if XISX and Y]_SY are the analytic extensions of the neighbor-
. -
hoods of X and Y to analytic manifolds then ' L .1
x b T
X, <Y UY Y € x UX (A.18) |

1€ VY 1% 9% o : .

If Yl#xl then there exists a point y€Y, and an associated neighborhood

1

*

1 Xl. By analytic continuation N(y) can be
*

extended to an analytic manifold Y, such that ngxl and Y,cY

N(y) <Y such that N(y)cX

1

1° If
* .

Y2-Y1 then Yl—xl otherwise Yl

. * *
c .
submanifolds Y2 and Y3 such that Y2 c xl and Y3 x1 or xl

must be decomposable into two analytic

Thus, apart from alternative solutions generated by varying a(xz) and
B(xz) , a necessary condition that an alternative solution h to the 2-D
phase problem must satis'_fy is that some of its zeros be the complex conjugates
of those of the original solution. Although this is the same mechanism by

which an infinite number of alternative solutions to the 1-D phase problem

are generated, the zeros must now satisfy the condition that they form a

union of one-dimensional analytic manifolds as opposed to a union of zero
NENER
N
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dimensional manifolds, that is a collection of connected analytic line seg-
ments as opposed to a collection of isolated points. If an alternative solu-
tion exists then either the whole manifold X has been "flipped" to its
conjugate, or it has been "torn" and only partially flipped. The connected
nature of x1 implies that the existence of "dotted lines" along which tears
may be made is very unlikely; this compares to the isolated points in the 1-D
problem, each of which may be flipped independently of the other.

Given this condition the form of an alternative solution may be determined

Let Xl be decomposable into submanifolds x2, x3 and define

1
fixed, zl €EC} . (A.19)

g
"

i,x2 Xiﬂ {(zl,xz):x2

then the function Iy (zl) may be written as the product
2 ~

g (z,) =g {(z,)g (z,) (A.20)
x2 1 1,x2 1 2,x2 1
where
!
g (z.) = m (l - ——————) . (A.21)
2,x 1 p, (x,)
2 (Qk(xz),xz)Exz'x2 k72
By (A.12) h_ (z,) may be written as
x2 1
h, (z)) =g, _ (z.)g _ (2D . (A.22)
x2 1 l,x2 1 2,x2 1l

If h(zl,zz) exists it is the analytic extension of hx (zl), therefore
2
_ x, _* %
h(zl.zz) —gl(zl.zz)qz(zl,zz).
We have not been able to show that this necessary condition for alter-

native solutions is also sufficient; i.e. given submanifolds xz, x3 and
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the decomposition of Eq. (A.20) that the hx (zl) of Eq. (A.22) may be ana-
2

lytically continued to a function h(zl,zz). One source of trouble is the
dependence of Nk(xz) on k; it is possible that for every Xy ﬂ:;l Nk(x2)=(m
Then although each zero (Ok(xz),x2) is analytic in a neighborhood of x,
there does not exist a neighborhood over which all zeros are uniformly ana-
lytic, and therefore a neighborhood over which the product of Eq. (A.21) is
provably analytic.

If the cardinalities of X"xz are finite, e.q. g(zl,zz) is a poly-

nomial,.then sufficiency can be shown. 1In the polynomial case decomposability

of X into X and X

1 2 3 is equivalent to a factorization of the polynomial.

However almost all polynomials of two variables. are irreducible so that such

a factorization and decomposition does not exist, therefore alternative
solutions do not exist. Irreducibility extends to general functions of two
variables with infinite sets of zeros, so that exact alternative solutions are
most unlikely in 2-D phase retrieval. This result on polynomials and its

implications is also presented in [23].

A.3 The Support of Alternative Solutions

In the previous subsection conditions that alternative solutions g and
h must satisfy in order that ,g(xl.xz)l = lh(xl,xz)l were derived. It re-
mains to derive necessary conditions on g and h so that (support G)
= (support H). The first is that B(xz) =0 in Eq. (A.12). This follows by
noting that if G(ul,uz) is nonzero in neighborhoods of points (uI,uz),

(uI,uz)EIB then the function a(ul,xz) of Eq. (A.ll) will be nonzero in
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neighborhoods of u1==uI and ul==u1 for almost all Xy So by Theorem A.3

h (z,) 1is the transform of a function ﬁ(u +X,) with support in (u ,u+)
x, 1 172 1"71

if and only if B(xz) =0.
A second condition follows from noting that the boundedness of the set

B implies that h(zl,zz) is of exponential growth in =z so that a(xz)

2'

must only be a linear function of x Summarizing these results and those

¢
of the previous section gives the next theorem.
Theorem A.4: Let g, G be a solution pair to the 2-D phase retrieval problem.

Then any other solution pair h, H must have the form

h ) i(a1+a222) “zr iz 23)
(21.22 = e gi(zl,zz)gz(zl,zz) (a.

where glg2 is a factorization of g.

We have been unable to complement these necessary conditions for equality
of support with sufficient conditions equivalent to those for the 1-D problem.
The difficulty seems to lie in determining the role of the geometry of B; we
give two examples

1. The first example concerns convexity and is taken froﬁ Huiser and
Torn [24]). Let g, G be a solution pair, then after the change of variables

to the new orthogonal coordinate systems (sl,sz),(tl,tz) with

sin Y t, = x, cos Y+ x., sin ¥

u, cos Y+u 1 1

1 1

(]
]

2 2

(A.24)

cos Y

s -u. siny+u, cos Y t:2 ==X. sin Y+ x

2 1 2 1 2

and definition of the quantities
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s;(sl) = max{s,: (s).s,) € B} l—-—~‘.

s;(sl) = min{szz (s)rs,) € B} .:‘
sI(W) = max{sl: (s)rs,) € B} ’ -. ‘!
(A.23) RRBENt
SI(W) = min{sl: (s).s,) € B} “
the relationship g= FG may be rewritten as i : k
SI(w) islt:1 s;(sl) iszt2
g(tl,tz) = I_ dsl e ) d52 e G(sl,sz) . (A.26)
s. (V) T s (s)) o
1 v 271 ! -
For fixed t2 the growth rate in gtz(tl) is determined by sI(UJ) and
s;(w)\ Knowing these values for all { is equivalent to knowing all
supporting hyperpianes for the set B, which by dwvality arguments from linear [ ]
algebra is equivalent to knowing the convex hull of B. If h and H is E
any other solution pair then htz(tl) must have the same growth as gtz(tl)
otherwise H has support outside of the convex hull of B. .
If g has a factorization glg2 such that the growth of 9, is always A
dominated by that of 9, (e.qg. 9, is a polynomial) then the alternative
- function -.
:' * * * =
:’ h(zl,zz) = 91(21'22)92(21'22) (A.27)
has the same modulus as g and support in the convex hull of B. If B is
B convex then h is an alternative solution, if B is not convex then it is !—
: possible that the support of H is not B even though still in the convex j'r .'
hull.
L
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%] 2. Let g, G be a solution pair, then it is trivial to show that the

* * * *
inverse transform of g (21'22) is G (-wl,-wz) which has support -B. So

* * *
a sufficient condition that g (21,22) be an alternative solution is that

B=-B, i.e. B 1is invariant under rotation by 180°.

-'
O
.
.
v '
i f
1 L]
-

.
T

Example 1 suggests that convexity of B is necessary for existence of an RS 'f

y
.

R
I

alternative solution and taken with example 2 suggests that for a factoriza-

tion g into 9,9, and an alternative solution h of Eg. (A.27) then B <
must have symmetries linked in some fashion to those directions in which

growth of 9, dominates 9;-

-a.
1
|

.

1 .
i a.4 Conclusdions ' ®
Nonuniqueness in the phase retrieval problem in two dimensions appears to
~

depend-on two conditions: (1) that the zero space of g be decomposable into .;j

a union of several submanifolds, (2) that B possesses a suitable combination ‘ o 5

of convexity and symmetry. Both conditions will, in general, be difficult to » ;t

satisfy compared to the 1-D phase retrieval problem. Only in the case of ) ?!
symmetries that effectively reduce g(zl,zz) to a function of one variable - -f!?

(e.g., the possession of radial symmetry investigated in [25]) will the mani- ~i€J

fold have an infinite decomposition as appears in the 1-D problem. In most ‘ :j

E cases it will be indivisible. Likewise the general two-dimensional bounded R !!
‘_ set has considerably more degrees of freedom than the one-dimensional bounded ?-;Lff
:; set, the interval, consequently it has far fewer symmetries. Therefore in .}}3;i
A general the 2-D phase retrieval problem will have a unique solution if one - -!
. exists. R
. SR
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Table 2.

function

Gl

FN

FNP

Relative performance of algorithms on model problem I

SOFN

with test
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32
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32
40

22
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40

8 x 10~
9 x10
5% 10

9x10
1x10
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Table 3. Relative performance of algorithms on model problem I with test |
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function G .
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)p
- €, N FN FNP SQFN SQFNP e
? 22 || 1.9x107° 50 1.5 1.0 .40 .30 °
r .
60 3220 1.5x107° 20 * .825 .875 .45
3 40 3%x107° 40 * 1.0 .35 .30
e LT
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Table 6. The range of nonzero eigenvalues in algorithms FN and FNP.

that for c¢=1.5, 2 the finite Fourier transform has at most 15

and 22 eigenvalues respectively with magnitudes greater than .002.

N 22 22 22 32 32 40 40
el 20 60 100 ©0 100 60 100
Gl FN 18-19 18-25 14-28 30 24-39 30-34 25-37
Gl FNP 16-18 17-18 14-21 28 23-28 30-33 23-37
Model Problem I
G2 FN 18 16-27 16-28 26-43 27-40 28-39 28-35
G2 FNP 17 14-24 16-23 24-29 25-30 24-26 28-29
Model Problem II
FN - - - - - 55-57 | 54-60
FNP 30-31 30-33 - - - 55-57 55-62
1Model Problem III
FN 33-44 33-44 33-44 47-64 57-63 - -
FNP 31-37 31-42 31-42 46-61 52-58 55-75 -
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Table 7. The range of matrix dimensions and effective dimensions of the - — -

block matrices in algorithms SQFN and SQFNP. The rows marked A ;~_3<1
contain the range of block matrix row sizes; the rows marked B

contain the range of the number of columns used by the routine :f:}
LLSQF. ‘—. “_,,j

W'.T.'-'- D!
e
-1

v
-

22 22 22 32 32 40 40
El 20 60 100 60 100 60 100
g
3 Gl SQFN A 40-44 30-44 32-44 36-64 44-64 49-80 54-80
Li B 12-23 12-17 9-22 9-25 12-26 12-29 13-29
t- Gl SQFNP A 23-32 28-36 27-37 36-50 38-51 46-61 47-62 ;'
- B 10-18 11-17 9-24 14-20 13-28 12-26 15-32

——
'l [ .

MODEL PROBLEM I

| I .
. e et
beride o i)

G2 SQFN A 28-44 36-44 32-44 46-64 53-63 72-80 75-80
B 10-22 13-21 10-23 8-27 12-25 16-33 23-33
G2 SQFNP A 26-29 30-35 29-36 45-53 41-51 54-60 58-65
B 14-19 10-16 10-20 18-24 11-28 11-27 20-30

MODEL PROBLEM II

SQFN A 87-88 79-88 72-88 91-128( 120-126 - -
B 36-44 25-44 18-44 31-64 33-43 - -
SQFNP A 53-65 58-77 61-73 85-104| 102-107 - -
B 23-37 17-44 18-44 31-64 30-41 - -
@
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Fig. 1. Two examples of poor convergence of the alternating projection

algorithm induced by ill conditioning.

el

Fig. 2. The tangent plane Ti(x) to a set 13i at the point Pi(x). Ti(x)

locally separates Bi and si(x).

Fig. 3. An example of the form of the Hessian operator J?’i(x) associated

with a sphere Bi'

Fig. 4. A solution to model problem I, test fungtion @2 with F(G) = 8'10-5: '_‘j ’..- ';

TP

Y‘T' .

A reconstructed modulus, O reconstructed phase, ---- exact modulus, V- !

(Nin e 4
.

exact phase. CoLe

x = - ) _" ) :
Fig. 5. A solution to model problem I, test function G2 with F(G) =7-10 5: AR
A  reconstructed modulus, © reconstructed phase, ---- exact modulus,

exact phase.

2 4

Fig. 6. A solution to model problem I, test function G° with F(G) =810 :

A reconstructed modulus, © reconstructed phase, ---- exact modulus,

exact phase.

x = -
Fig. 7. A solution to model problem III, test function 62 with F(G) =2-10 2:

A reconstructed modulus, ©O reconstructed phase, ~---- exact modulus,

exact phase.

2 2

X x -
Fig. 8. A solution to model problem III, test function G with F(G) =3-10

A reconstructed modulus, © reconstructed phase, ---- exact modulus,

exact phase.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10.

11.

12,

15.

X
A solution to model problem III, test function G2 with

X -
F(G) =7.10 2: A reconstructed modulus, O reconstructed phase,

~--=-- exact modulus, exact phase.

An example of preservation of symmetry, a solution to model problem
. x1 . A

I, test function G with G0==O.

Sample realization solution to model problem I, test function @l,

£€=20%: A reconstructed real component, O reconstructed imaginary

component, exact real component, ---- exact imaginary component.

-~

Sample realization solution +£0 model problem I, test function Gl,

€=60%: A reconstructed real component, O reconstructed imaginary

component, exact real component, ---- exact imaginary comporent.

-~
A

Sample realization solution to model problem I, test function Gl,

€ =100%: A reconstructed real component, O reconstructed imaginary

component, exact real component, ---- exact imaginary component.
: . . . 21
Sample realization solution to model problem III, test function G,

€=20%: A reconstructed real component, O reconstructed imaginary

exact real component, -~-- exact imaginary component.

Sample realization solution to model problem III, test function 61,

component,

£€=60%: A reconstructed real component, © reconstructed imaginary

exact real component, ---- exact imaginary component.

Sample realization solution to model problem III, test function al,

component,

€ =100%: A reconstructed real component, © reconstructed imaginary

component, exact real component, ---- exact imaginary component.
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19.

20.

21.

22.
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Sample realization solution to model problem I, test function

€ =20%: ©O reconstructed phase, A reconstructed modulus,

---- exact modulus, exact phase.
Sample realization solution to model problem I, test function

€ =60%: O reconstructed phase, A reconstructed modulus,

---- exact modulus, exact phase.
Sample realization solution to model problem I, test function

€ = 100%: O reconstructed phase, A reconstructed modulus,

---- exact modulus, exact phase.
Sample realization solution to model problem III, test function

€ =20%: ©O reconstructed phase, A reconstructed modulus,

---- exact modulus, exact phase.
Sample realization solution to model problem III, test function

€ =60%: O reconstructed phase, A reconstructed modulus,

---- exact modulus, exact phase.
Sample realization solution to model problem III, test function

€ = 100%: O reconstructed phase, A reconstructed modulus,

---- exact modulus, exact phase.
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Fig. 4. A solution to model problem I, test function a’ with F(8) =8-1O-5:

A reconstructed modulis, © reconstructed phase, ---- exact modulus,
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Fig. 5. A solution to model problem I, test function 62 with F(G) = 7-10-5:

A reconstructed modulus, © reconstructed phase, ---- exact modulus,

exact phase.
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A reconstructed modulus, O reconstructed phase, ---- exact modulus,

. exact phase.

1o
. . R
e @

v 4" .. ‘l . N
’ '-‘ . . .
r . . . . N
ISR N

197 ‘o " T

"
3
v
A m.

- -
AR

- - -
o . . . . S .
" -, . " -
° - - . . - - - ~ - -
) e ‘ | B 3 - .. - ,'\‘_~’~\n.- PP A . PRI .-
- LT N S ° . . . w e T e - . e et ) _
. ) v - . ‘. N . 3 L.-' b, . Dl ° L‘ l‘ e i 20 e a o . 2% af, PadNE SN 'y L N~ aadl
P Y PR PRI N Sy U i, 2PNy § e




oo
12~ aa -
|
.:-.:::m:.-a—%—g—-g—cn—-t-.: - Tr - -A-tr i A-trAA-S-Caepran
i
%]
4
z
% 0
S
3
o 3
q
-
. 12k .
a
24 n —l A
2 1 [) 1 2
[A]

x = -
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A reconstructed modulus, © reconstructec phase, ---- exact modulus,

exact phase.

198 Y




——————— T T T T T W TV T Y T T Y TR E T Y Ll el Tl i R Badt ) oY
- R &) PRC ) alirasut-uianaieo g i ettt S AR Sl Rt B

15 \ T Y

O

ey

MODULUS - PHASE

2

x -
Fig. 8. A solution to model problem 111, test function G with F(é) = 3-10 2:

A reconstructed modulus, O reconstructed phase, ---- exact modulus,

exact phase.
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F(a) = 7-10-2= A reconstructed modulus, © reconstructed phase,

~=---. exact modulus, exact phase.
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Sample realization solution to model problem I, test function él,

€=20%: A reconstructed real component, © reconstructed imaginary

component, exact real component, ---- exact imaginary compcnent.

202

rT
2

[

|
P
IR
ey
- ~J

a2+ a'm a'se a"atarotovavo 7oL

.K.L';.'. e

.
.
. c
R N
PSVRT N W W wwi

¢

lo




- IMAGINARY

REAL

L2
- - .

M a0 S s ot an am e 4

Fig. 12.

don g S = e Ta i Vg G cng Bad Al And. 4 ath g A Sadofial Sl Fad medh el S Sl ShA S b A A T S At S P A * Rl S

Yy o]
056-006c—CE0-0-0-0--006-0-0-6-0-30-0 G =——~-=

o o©0

]

~o---z
o o
o
[J
2 L L 1
2 A 0
[

€ =60%:

component,

Sample realization solution to model problem I, test function G
4 reconstructed real component, © reconstructed imaginary

exact real component, ---- exact imaginary component.
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€ =1008: A reconstructed real component, © reconstructed imaginary T

component, exact real component, ---- exact imaginary component. 7_"_ o
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Fig. 14. Sample realization solution to model problem 11, test function al,

€=20%: A reconstructed real component, © reconstructed imaginary

component, exact real component, ~--- exact imaginary component.
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€E=60%: A reconstructed real component, © reconstructed imaginary
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component, exact real component, ---- exact imaginary cnv, “nent.

- Ty
T

e

™

AR’ I
LI

o ¢

206

e T
.




RIAL - IMAGINARY

-

Samg le realization solution to model problem III, test function é

€ = 100%: & reconstructed real component, O reconstructed imaginary

camponent,

exact real component, ---- exact imaginary component.
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Fig. 17. Sample realization solution to model problem I, test function G-,

£=20%: O reconstructed phase, A reconstructed modulus,

--=-- exact modulus, exact phase.
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Sample realization solution to model problem I, test function 62,

O reconstructed phase,

exact phase.

209

4 reconstructed modulus,




E“v‘.“‘ﬁ-‘ W N R R T R R e ey vry

MODULUS - PHASE

Fig. 19. Sample realization solution to model problem I, test function 62,

€ = 100%: © reconstructed phase, A reconstructed modulus,

---- exact modulus, exact phase.
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€ =20%: O reconstructed phase, A reconstructed modulus,

-=-=-=- exact modulus, exact phase.
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Fig. 21. Sample realization solution to model problem III, test function 62,

€E=60%: O reconstructed phase, A reconstructed modulus,

~--- exact modulus, exact phase.
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Fig. 22. Sample realization solution to model problem III, test function Gz,

€ = 100%: O reconstructed phase, A reconstructed modulus,

~--= exact modulus,

exact phase.

213/214




Distribution List

addresses numter L—wj,
of copies

8]

or RJ Michalak ' .
r&DC/DCSE - i

- HADC/TETD 1
. SRIFFISS AFD NY 13441

[ 3]

RADC /DAP
{ SRIFFISS AFB NY 13441

ADMINISTRATOR 12 DR
DEF TECH INF CTR BARI
DTIC-DDA A~
CAMERON STA BG 5 Lo e
ALEXANDRIA vA 22314 R
.__\;_ ::i
. ﬁﬁi%
S
: =0Box 8618 SRR
® Ann Arbor MI 48107 .'_ |
- ERIM 1
P “ttn: Dr S Robinson
- FOBox B618

Ann Arbor MI 48107




A T R A T B e i S Sl Mal At sl S st s o 27 e VT

/
Il
s

oo

O S

B Y

.

v vy
P
’

Lgho=", R auth
R AN
'
r
s
»

[
”

v

MRJ Inc. 1
~ttn: Dr K Robinson :
Tt Blake S¢t. ‘i

«2edham MA 02192

Itek Zarp. 1 T

Attn: E. Galat .
Cptical Systems Division !
' 10 Maguire Rd. ;
. -axingteon MA 02172

o DARPA/STO 1
- attn: Lt. Coi. Bell

& 1400 Wilson Blvd.

Arlington VA 22209

AFWL /ARAA i
Aattn: Dr L Skelnik
Kirtland AFE 87117

~earospace

Attn: Dr V Mahajan

MS Ma/978

=380 E. El Segundo Blvd.
Z1 Segundo CA 90245

Lockheed i
Attn: Dr 8 Williams

7251 Hanover St.

Pale Alto CA 94304

=yghes

~ttn: Dr R Withringten RSN

Zuild. E1 MS F/124 -#:;“
, E! Segundo CA 90245 N
o RS
o . ﬁ
N T
a.:. . ._:.\':'1
., .' S
o oo '_:
‘._ "~"_.1
= DL-2
P . -
,\_‘_._4“'.';.:__ e :: : \ ”'.':: ' e .

e — dcdbobncsinctnnnci, T K Lo T




N T T T e W T ey -
L S arsl ae e >

e

7055 L
Attn: Dr D Fried . ':.:::::-.
FJBox 346 PR
Placentia CA 92670

E M Corp. 1
' ~t¢tn: Dr E Silvertooth

N C/0 Jeanette Miller (Security Officer)
t' 3155 W. Rosecrans Ave Hawthaorrne CA 90250

[y

: Riverside Research

&ttn: HALO Library, Mr R Passett
1701 N Fort Meyer Dr

] Arlington VA 22209

k!

[

—

CARPA/DEO 1
Attn: R Strunce

- 1400 Wilson Blwvd.

ﬁ- Arlington VA 22209

- ERIM 1
- ~ttn: Dr S8 Robinsan

. POBox 8618

ann Aarbor MI 48107

MRJ Inc. 1
attn: Dr K Rabinson

. 71 Blake S¢t.

e Heedham MA 02192

" [tek Corp. 1
e Aattn: E. Galat

Cptical Systems Division

: 10 Maguire Rd. T
N Lexington MA 02173 R

8 DARPA/STO 1 Bl
L ] attn: Lt. Cecl. Bell Tl
: 1400 Wilson Blvd. . L

-

Arlington VA 22209 A,
. ;'ﬂ»"_q

s

DL-3

.........

[




L Rt S A A A N TS Paf bl Wl ~nt Sal aatl g bea b enil mad pag ne s g LSS - -— —_——

AFHL/ARAA 1
Attn: Dr L Skolnik
“irtland AFB 87117

-

Lergospace
Attn: Dr ¥V Mahaian

-3 M4/978

=250 E. El Segundo Blvid.
£. ESs=gunda CA 90245

l.ocxkhoed
Attn: Dr 8 Williams -

3251 Hanover St. R
Pslo Alto CA 94304 O

Hughes

Attn: Dr R Withrington
Build. E1 MS F/124

E1 Segundo CA 90245

+0sC 1
Attn: Dr D Fried

POBox 444

Placentia CA 92670

30M Corp. 1
Attn: Dr E Silvertooth

C/0 Jeanette Miller (Security Qfficer)

5155 W. Rosecrans Ave Hawthorne CA 90250

Siverside Research 1
Attn: HALD Library, Mr R Passet¢

1701 N Fort Meyer Dr

~rlington VA 22209

ZARPA/DEOD 1
Attn: R Strunce

14600 Wilson Blvd.

Arlington VA 22209

DL-4

e

...........

. A YL A et et e o T B et e e N
Jr e AP P P I S O e T T L L et e e e
PO B R T DI I Sl WU T W I A B o A% s r e et e -~ e .« % . .,




e “Yda “BAe ade S A v v w - i - —y ————y
e 2 e 2 o i i Svin DD pUI AU it et I R T s i S S e Sl R I B AR s S s v A J Y

Ty

:

s
t
b

RGB Assoc.

Attn: Prof R 3arakac
*3Eox 8

wayland MA 01778

Eikonix Coro. 1 .
Aatgn: Dr R Gonsalves

=232 Crosdy Rd.

SBedford MA 01730

MYIT 1

Institute for Optics
Frof M Halioua
11d Westbury NY 1148

DL-5

PUETEEE A LN S
. 0, PR AT -

N R et ot et At
VP W L ST T Sl W, FE




P I rae g Siush s v T T - BRI AR/ STt eh et Sa e e Jyt — —— T T v

MISSION
of
Rome Air Development Center

RADC plans and executes neseanch, development, test and
selected acquisition proghams in support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering support within areas of technical competence
48 provided to ESD Progrnam 04fices (POs) and other ESD
elements. The priineipal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
Lonospherndic propagation, sofid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

3
3

WWWWM i.. °

- oy 7«,1-'#.1
- . -

e
L .@

~ e W,

.
PR T




